Advertisement

Journal of Applied Phycology

, Volume 28, Issue 5, pp 3071–3074 | Cite as

Characterization of 12 polymorphic microsatellite markers in the sugar kelp Saccharina latissima

  • Cristina Paulino
  • João NeivaEmail author
  • Nelson C. Coelho
  • Tânia Aires
  • Núria Marbà
  • Dorte Krause-Jensen
  • Ester A. Serrão
Article

Abstract

Saccharina latissima is an ecologically and economically important kelp species native to the coastal regions of the Northern Hemisphere. This species has considerable phylogeographic structure and morphological plasticity, but lack of resolution of available genetic markers prevents a finer characterization of its genetic diversity and structure. Here, we describe 12 microsatellite loci identified in silico in a genomic library, and assess their polymorphism in three distant populations. Allelic richness at the species level was relatively high (5–23 alleles per locus), as was gene diversity within populations (0.42 < H E < 0.62). In addition, individuals readily form distinct genotypic clusters matching their populations of origin. The variation detected confirms the great potential of these markers to investigate the biogeography and population dynamics of S. latissima, and to better characterize its genetic resources for the establishing farming industry.

Keywords

Gene diversity Genetic differentiation Kelp Microsatellite markers Saccharina latissima Phaeophyceae 

Notes

Acknowledgments

This work was funded by Portuguese Fundação para a Ciência e Tecnologia (FCT) through the project EXTANT (EXCL/AAG-GLO/0661/2012) and postdoctoral fellowship to JN (SFRH/BPD/88935/2012), and through the European Union’s Seventh Framework Programme, grant agreement no. 226248—Arctic Tipping Points (ATP).

References

  1. Alberto F (2009) MsatAllele-1.0: an R package to visualize the binning of microsatellite alleles. J Hered 100:394–397CrossRefPubMedGoogle Scholar
  2. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (1996) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions. Université de Montpellier II, Montpellier.Google Scholar
  3. Gutiérrez JL, Jones CG, Byers JE, Arkema KK, Berkenbusch K, Commito JA, Duarte CM, Hacker SD, Lambrinos JG, Hendriks IE, Hogarth PJ, Palomo MG, Wild C (2011) Physical ecosystem engineers and the functioning of estuaries and coasts. In: Wolanski E, McLusky D (eds.) Treatise on Estuarine and Coastal Science, Vol 7, Elsevier pp. 53–81.Google Scholar
  4. Martínez B, Afonso-Carrillo J, Anadón R, Araújo R, Arenas F, Arrontes J, Bárbara I, Borja A, Díez I, Duarte L, Fernández C, Tasende MG, Gorostiaga JM, Juanes JA, Peteiro C, Puente A, Rico JM, Sangil C, Sansón M, Tuya F, Viejo RM (2015) Regresión de las algas marinas en la costa atlántica de la Península Ibérica y en las Islas Canarias por efecto del cambio climático. Algas 49:5–12Google Scholar
  5. Martins WS, Lucas DCS, Neves KFDS, Bertioli DJ (2009) WebSat—a web software for microsatellite marker development. Bioinformation 3:282–283CrossRefPubMedPubMedCentralGoogle Scholar
  6. McDevit DC, Saunders GW (2010) A DNA barcode examination of the Laminariaceae (Phaeophyceae) in Canada reveals novel biogeographical and evolutionary insights. Phycologia 49:235–248CrossRefGoogle Scholar
  7. Moy FE, Christie H (2012) Large-scale shift from sugar kelp (Saccharina latissima) to ephemeral algae along the south and west coast of Norway. Mar Biol Res 8:309–321CrossRefGoogle Scholar
  8. Müller R, Laepple T, Bartsch I, Wiencke C (2009) Impact of oceanic warming on the distribution of seaweeds in polar and cold-temperate waters. Bot Mar 52:617–638CrossRefGoogle Scholar
  9. Peteiro C, Sánchez N, Dueñas-Liaño C, Martínez B (2014) Open-sea cultivation by transplanting young fronds of the kelp Saccharina latissima. J Appl Phycol 26:519–528CrossRefGoogle Scholar
  10. Smale DA, Burrows MT, Moore P, O’Connor N, Hawkins SJ (2013) Threats and knowledge gaps for ecosystem services provided by kelp forests: a northeast Atlantic perspective. Ecol Evol 3:4016–4038CrossRefPubMedPubMedCentralGoogle Scholar
  11. Snirc A, Silberfeld T, Bonnet J, Tillier A, Tuffet S, Sun J-S (2010) Optimization of DNA extraction from brown algae (Phaeophyceae) based on a commercial kit. J Phycol 46:616–621CrossRefGoogle Scholar
  12. Steneck RS, Graham MH, Bourq BJ, Corbett D, Erlandson JM (2002) Kelp forest ecosystems, biodiversity, stability resilience and future. Environ Conserv 29:436–459CrossRefGoogle Scholar
  13. Toonen RJ, Hughes S (2001) Increased throughput for fragment analysis on an ABI Prism® 377 automated sequencer using a membrane comb and STRand software. BioTechniques 31:1320–1324PubMedGoogle Scholar
  14. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Centro de Ciências do MarUniversidade do AlgarveFaroPortugal
  2. 2.Department of Global Change ResearchIMEDEA (CSIC-UIB)EsporlesSpain
  3. 3.Department of BioscienceAarhus UniversitySilkeborgDenmark
  4. 4.Arctic Research CentreAarhus UniversityAarhusDenmark

Personalised recommendations