Journal of Applied Phycology

, Volume 28, Issue 5, pp 2631–2640 | Cite as

Effect of high CO2 concentrations on the growth and macromolecular composition of a heat- and high-light-tolerant microalga

  • Prachi Varshney
  • Sujata Sohoni
  • Pramod P. Wangikar
  • John Beardall


A green microalga, Acutodesmus sp., a close relative of Acutodesmus deserticola, was isolated from the wastewater discharges of an oil refinery in India. This study examined the effects of light intensity, temperature, pH, and high-CO2 treatments (up to 20 %) on the growth of the alga and investigated the effects of different CO2 treatments on its macromolecular composition (protein, carbohydrate, and lipids). Under controlled laboratory conditions, the alga showed high growth rates over a wide range of light (up to 700 μmol photons m−2 s−1), temperature (up to 40 °C), and pH (5–10) conditions. In the stationary phase, the highest protein and carbohydrate content was found to be 71.52 and 40.72 % of dry weight at 5 and 15 % CO2, respectively. After 5 days of cultivation, the maximum dry weight biomass attained in these cultures was 1.149, 1.99, 1.75, and 1.65 g L−1 at 5, 10, 15, and 20 % CO2, respectively, indicating that this strain has significant tolerance to CO2. These results indicate that this strain is a promising candidate for use in biofixation of CO2 from the flue gases emitted by industries, and it also has a strong potential as a feedstock for value-added substances.


Green microalga High-CO2 tolerance Industrial wastewater Light intensity Temperature 



The authors are thankful to JSW Foundation, India, for providing financial assistance for this research. We are also grateful to Dr. Kumar M. Iyer of JSW Steel for his useful suggestions and discussion.


  1. Al-qasmi M, Member NR, Talebi S, Al-Rajhi S, Al-Barwani T (2012) A review of effect of light on microalgae growth. In: Proceedings of the World Congress on Engineering. London, U.K., pp 608–10Google Scholar
  2. Bachu S (2008) CO2 storage in geological media: role, means, status and barriers to deployment. Prog Energy Combust Sci 34:254–273CrossRefGoogle Scholar
  3. Basu S, Roy AS, Mohanty K, Ghoshal AK (2013) Enhanced CO2 sequestration by a novel microalga: Scenedesmus obliquus SA1 isolated from bio-diversity hotspot region of Assam, India. Bioresour Technol 143:369–377CrossRefPubMedGoogle Scholar
  4. Ben-Amotz A, Avron M (1990) The biotechnology of cultivating the halotolerant alga Dunaliella. Trends Biotechnol 8:121–126CrossRefGoogle Scholar
  5. Centi G, Perathoner S (2011) CO2-based energy vectors for the storage of solar energy. Greenh Gas Sci Technol 35:21–35CrossRefGoogle Scholar
  6. Cheah WY, Show PL, Chang J-S, Ling TC, Juan JC (2015) Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresour Technol 184:190–201CrossRefPubMedGoogle Scholar
  7. Chen W, Zhang C, Song L, Sommerfeld M, Hu Q (2009) A high throughput Nile Red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Methods 77:41–47CrossRefPubMedGoogle Scholar
  8. Cheng L, Zhang L, Chen H, Gao C (2006) Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Sep Purif Technol 50:324–329CrossRefGoogle Scholar
  9. de Morais MG, Costa JAV (2007) Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energy Convers Manag 48:2169–2173CrossRefGoogle Scholar
  10. Doan TTY, Obbard JP (2011) Improved Nile Red staining of Nannochloropsis sp. J Appl Phycol 23:895–901CrossRefGoogle Scholar
  11. Domozych DS, Ciancia M, Fangel JU, Mikkelsen MD, Ulvskov P, Willats WG (2012) The cell walls of green algae: a journey through evolution and diversity. Front Plant Sci 3:1–7CrossRefGoogle Scholar
  12. Doria E, Longoni P, Scibilia L, Iazzi N, Cella R, Nielsen E (2012) Isolation and characterization of a Scenedesmus acutus strain to be used for bioremediation of urban wastewater. J Appl Phycol 24:375–383CrossRefGoogle Scholar
  13. DuBois M, Gilles KA, Hamilton J, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  14. Franklin L, Osmond CB, Larkum AWD (2003) Photoinhibition, UV-B and algal photosynthesis. In: Larkum AWD, Douglas SE, Raven JA (eds) Photosynthesis in algae. Springer, Dordrecht, pp 351–384CrossRefGoogle Scholar
  15. Gatenby CM, Orcutt DM, Kreeger DA, Parker BC, Jones VA, Neves RJ (2003) Biochemical composition of three algal species proposed as food for captive freshwater mussels. J Appl Phycol 15:1–11CrossRefGoogle Scholar
  16. Glibert PM, Azanza R, Burford M et al (2008) Ocean urea fertilization for carbon credits poses high ecological risks. Mar Pollut Bull 56:1049–1056CrossRefPubMedGoogle Scholar
  17. Gouveia L, Batista AP, Miranda A, Empis J, Raymundo A (2007) Chlorella vulgaris biomass used as colouring source in traditional butter cookies. Innov Food Sci Emerg Technol 8:433–436CrossRefGoogle Scholar
  18. Gris B, Morosinotto T, Giacometti GM, Bertucco A, Sforza E (2014) Cultivation of Scenedesmus obliquus in photobioreactors: effects of light intensities and light–dark cycles on growth, productivity, and biochemical composition. Appl Biochem Biotechnol 172:1–13CrossRefGoogle Scholar
  19. Hegewald E, Bock C, Krienitz L (2013) A phylogenetic study on Scenedesmaceae with the description of a new species of Pectinodesmus and the new genera Verrucodesmus and Chodatodesmus (Chlorophyta, Chlorophyceae). Fottea 13:149–164CrossRefGoogle Scholar
  20. Ho SH, Chen CY, Chang JS (2012) Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour Technol 113:244–252CrossRefPubMedGoogle Scholar
  21. Jia Q, Xiang W, Yang F, Hu Q, Tang M, Chen C, Wang G, Dai S, Wu H, Wu H (2015) Low-cost cultivation of Scenedesmus sp. with filtered anaerobically digested piggery wastewater: biofuel production and pollutant remediation. J Appl Phycol. DOI:  10.1007/s10811-015-0610-9 1–10.
  22. Juneja A, Ceballos R, Murthy G (2013) Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies 6:4607–4638CrossRefGoogle Scholar
  23. Kastánek F, Sabata S, Solcová O, Maléterová Y, Kastánek P, Brányiková I, Kuthan K, Zachleder V (2010) In-field experimental verification of cultivation of microalgae Chlorella sp. using the flue gas from a cogeneration unit as a source of carbon dioxide. Waste Manag Res 28:961–966CrossRefPubMedGoogle Scholar
  24. Kirk JTO (2010) Light and photosynthesis in aquatic ecosystems, 3rd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  25. Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, Malcata FX, van Langenhove H (2010) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28:371–380CrossRefPubMedGoogle Scholar
  26. Lara-Gil JA, Álvarez MM, Pacheco A (2014) Toxicity of flue gas components from cement plants in microalgae CO2 mitigation systems. J Appl Phycol 26:357–368CrossRefGoogle Scholar
  27. Lewis LA, Flechtner VR (2004) Cryptic species of Scenedesmus (Chlorophyta) from desert soil communities of Western North America. J Phycol 40:1127–1137CrossRefGoogle Scholar
  28. Liu J, Yuan C, Hu G, Li F (2012) Effects of light intensity on the growth and lipid accumulation of microalga Scenedesmus sp. 11–1 under nitrogen limitation. Appl Biochem Biotechnol 166:2127–2137CrossRefPubMedGoogle Scholar
  29. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  30. Mandotra SK, Kumar P, Suseela MR, Ramteke PW (2014) Fresh water green microalga Scenedesmus abundans: a potential feedstock for high quality biodiesel production. Bioresour Technol 156:42–47CrossRefPubMedGoogle Scholar
  31. Miranda JR, Passarinho PC, Gouveia L (2012) Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresour Technol 104:342–348CrossRefPubMedGoogle Scholar
  32. Mondal MK, Balsora HK, Varshney P (2012) Progress and trends in CO2 capture/separation technologies: a review. Energy 46:431–441CrossRefGoogle Scholar
  33. Onay M, Sonmez C, Oktem HA, Yucel AM (2014) Thermo-resistant green microalgae for effective biodiesel production: isolation and characterization of unialgal species from geothermal flora of Central Anatolia. Bioresour Technol 169:62–71CrossRefPubMedGoogle Scholar
  34. Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102:35–42CrossRefPubMedGoogle Scholar
  35. Rahaman MSA, Cheng LH, Xu XH et al (2011) A review of carbon dioxide capture and utilization by membrane integrated microalgal cultivation processes. Renew Sustain Energy Rev 15:4002–4012CrossRefGoogle Scholar
  36. Ramaraj R, Tsai DDW, Chen PH (2014) Freshwater microalgae niche of air carbon dioxide mitigation. Ecol Eng 68:47–52CrossRefGoogle Scholar
  37. Ren HY, Liu BF, Ma C, Zhao L, Ren NQ (2013) A new lipid-rich microalga Scenedesmus sp. strain R-16 isolated using Nile red staining: effects of carbon and nitrogen sources and initial pH on the biomass and lipid production. Biotechnol Biofuels 6:143CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ritschard RL (1992) Marine algae as a CO2 sink. Water Air Soil Pollut 64:289–303CrossRefGoogle Scholar
  39. Seth JR, Wangikar PP (2015) Challenges and opportunities for microalgae-mediated CO2 capture and biorefinery. Biotechnol Bioeng 112:1281–1296CrossRefPubMedGoogle Scholar
  40. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96CrossRefPubMedGoogle Scholar
  41. Tang D, Han W, Li P, Miao X, Zhong J (2011) CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresour Technol 102:3071–3076CrossRefPubMedGoogle Scholar
  42. Thielmann J, Tolbert NE, Goyal A, Sneger H (1990) Two systems for concentrating CO2 and bicarbonate during photosynthesis by Scenedesmus. Plant Physiol 92:622–629CrossRefPubMedPubMedCentralGoogle Scholar
  43. Treves H, Raanan H, Finkel OM, Berkowicz SM, Keren N, Shotland Y, Kaplan A (2013) A newly isolated Chlorella sp. from desert sand crusts exhibits a unique resistance to excess light intensity. FEMS Microbiol Ecol 86:373–380CrossRefPubMedGoogle Scholar
  44. Varshney P, Mikulic P, Vonshak A, Beardall J, Wangikar PP (2015) Extremophilic micro-algae and their potential contribution in biotechnology. Bioresour Technol 184:363–372CrossRefPubMedGoogle Scholar
  45. Vidyashankar S, Deviprasad K, Chauhan VS, Ravishankar GA, Sarada R (2013) Selection and evaluation of CO2 tolerant indigenous microalga Scenedesmus dimorphus for unsaturated fatty acid rich lipid production under different culture conditions. Bioresour Technol 144:28–37CrossRefPubMedGoogle Scholar
  46. Vonshak A, Richmond A (1988) Mass production of the blue-green alga Spirulina: an overview. Biomass 15:233–247CrossRefGoogle Scholar
  47. Walker DA (2009) Biofuels, facts, fantasy, and feasibility. J Appl Phycol 21:509–517CrossRefGoogle Scholar
  48. Wang L, Li Y, Sommerfeld M, Hu Q (2013) A flexible culture process for production of the green microalga Scenedesmus dimorphus rich in protein, carbohydrate or lipid. Bioresour Technol 129:289–295CrossRefPubMedGoogle Scholar
  49. Watanabe Y, Ohmura N, Saiki H (1992) Isolation and determination of cultural characteristics of microalgae which functions under CO2 enriched atmosphere. Energy Convers Manag 33:545–552CrossRefGoogle Scholar
  50. Welter C, Schwenk J, Kanani B, Van Blargan J, Belovich JM (2013) Minimal medium for optimal growth and lipid production of the microalgae Scenedesmus dimorphus. AICHE 32:937–945Google Scholar
  51. Yue L, Chen W (2005) Isolation and determination of cultural characteristics of a new highly CO2 tolerant fresh water microalgae. Energy Convers Manag 46:1868–1876CrossRefGoogle Scholar
  52. Yun Y-S, Lee SB, Park JM, Lee C-I, Yang J-W (1997) Carbon dioxide fixation by algal cultivation using wastewater nutrients. J Chem Technol Biotechnol 69:451–455CrossRefGoogle Scholar
  53. Zhang T-Y, Wu Y-H, Hu H-Y (2014) Domestic wastewater treatment and biofuel production by using microalga Scenedesmus sp. ZTY1. Water Sci Technol 69:2492CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Prachi Varshney
    • 1
    • 2
    • 3
  • Sujata Sohoni
    • 2
    • 4
  • Pramod P. Wangikar
    • 2
    • 4
    • 5
  • John Beardall
    • 3
  1. 1.IITB-Monash Research Academy, CSE BuildingIndian Institute of Technology BombayMumbaiIndia
  2. 2.Department of Chemical EngineeringIndian Institute of Technology BombayMumbaiIndia
  3. 3.School of Biological SciencesMonash UniversityClaytonAustralia
  4. 4.DBT-Pan IIT Center for BioenergyIndian Institute of Technology BombayMumbaiIndia
  5. 5.Wadhwani Research Centre for BioengineeringIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations