Advertisement

Journal of Applied Phycology

, Volume 28, Issue 4, pp 2241–2254 | Cite as

Does allelopathy affect co-culturing Haslea ostrearia with other microalgae relevant to aquaculture?

  • Fiddy S. Prasetiya
  • Ikha Safitri
  • Ita Widowati
  • Bruno Cognie
  • Priscilla Decottignies
  • Romain Gastineau
  • Michèle Morançais
  • Eko Windarto
  • Réjean Tremblay
  • Jean-Luc Mouget
Article

Abstract

Haslea ostrearia is a marine diatom known to produce marennine, a water-soluble blue-green pigment responsible for the greening of oysters in ponds along the French Atlantic coast. This phenomenon occurs seasonally when H. ostrearia blooms in oyster ponds, and it increases the economic value of cultured oysters. From an ecological perspective, H. ostrearia blooms are accompanied by a decrease in the abundance of other microalgae, suggesting that this diatom produces allelochemicals. Recent studies showed that purified marennine has other biological activities, for instance antioxidant, antibacterial, and antiviral activities, which could be used in aquaculture to promote this pigment as a natural antipathogen agent. One important issue regarding the possible use of H. ostrearia in aquaculture as a mixed algal diet, however, is the importance of marennine allelopathy. In this study, we investigated the allelopathic effect of H. ostrearia on the growth of five microalgal species relevant to aquaculture: Chaetoceros calcitrans, Skeletonema costatum, Phaeodactylum tricornutum, Tetraselmis suecica, and Tisochrysis lutea. Allelopathic tests were realized by co-culturing these microalgae with H. ostrearia in batch and in semi-continuous mode, based on initial biovolume ratios. Our findings showed that inhibition of the growth of microalgae due to the presence of H. ostrearia and marennine was species dependent. Skeletonema costatum, C. calcitrans, and T. lutea were significantly more sensitive, whereas T. suecica and P. tricornutum appeared to be more resistant. Growth irradiance significantly influenced the allelopathic effect against the sensitive species S. costatum, and the H. ostrearia production of marennine increases with irradiance. Data presented in this study partly support the hypothesis that marennine released into the culture medium possibly acts as an allelochemical compound, thus explaining the dominance of H. ostrearia and the loss of sensitive algae in oyster ponds, but also that some species are insensitive, which allows co-culturing and use in a mixed algal diet in aquaculture.

Keywords

Allelopathy Aquaculture Haslea ostrearia Marennine Microalgae 

Notes

Acknowledgments

The authors acknowledge the valuable contribution of F. Descarega for her technical assistance in providing the NCC microalgae and of the laboratory Ifremer Physiologie et Biotechnologie des Algues (PBA, Nantes) for other aquaculture-relevant species used in this study. We also thank the Campus France for the PhD scholarship granted to FSP. This work is a partial fulfillment of the requirements for a PhD (FSP), and a master degree (IS). This publication benefited from funding from the European Commission under the Community’s Seventh Framework Programme BIOVADIA (contract no. FP7-PEOPLE-2010-IRSES-269294, Biodiversity and Valorisation of Blue Diatoms) and also from the regional research foundation Syndicat Mixte pour le Développement de l’Aquaculture et de la Pêche des Pays de Loire (SMIDAP-PANDHA, arrêté no. 2013-04250). The authors acknowledge the valuable comments by the anonymous reviewers.

References

  1. Adolph S, Poulet SA, Pohnert G (2003) Synthesis and biological activity of α, β, γ, δ--unsaturated aldehydes from diatoms. Tetrahedron 59:3003–3008Google Scholar
  2. Alderman DJ, Hastings TS (1998) Antibiotic use in aquaculture: development of antibiotic resistance–potential for consumer health risks. Int J Food Sci Technol 33:139–155CrossRefGoogle Scholar
  3. Arzul G, Seguel M, Guzman L, Erard-Le Denn E (1999) Comparison of allelopathic properties in three toxic Alexandrium species. J Exp Mar Bio Ecol 232:285–295CrossRefGoogle Scholar
  4. Barillé L, Bougrier S, Geairon P, Robert J-M (1994) Alimentation expérimentale de l’huître Crassostrea gigas à l’aide de navicules bleus Haslea ostrearia (Simonsen) de différentes tailles. Oceanol Acta 17:201–210Google Scholar
  5. Bartual A, Gálvez JA, Ojeda F (2008) Phenotypic response of the diatom Phaeodactylum tricornutum Bohlin to experimental changes in the inorganic carbon system. Bot Mar 51:350–359CrossRefGoogle Scholar
  6. Becker W (2004) Handbook of microalgal culture. Blackwell, OxfordGoogle Scholar
  7. Bergé JP, Bourgougnon N, Alban S et al (1999) Antiviral and anticoagulant activities of a water-soluble fraction of the marine diatom Haslea ostrearia. Planta Med 65:604–609CrossRefPubMedGoogle Scholar
  8. Brown MR, Jeffrey SW, Volkman JK, Dunstan GA (1997) Nutritional properties of microalgae for mariculture. Aquaculture 151:315–331CrossRefGoogle Scholar
  9. Cabello FC (2006) Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol 8:1137–1144CrossRefPubMedGoogle Scholar
  10. Carbonnelle D, Pondaven P, Morancais M, Masse G, Bosch S, Jacquot C, Briand G, Robert J, Roussakis C (1999) Antitumor and antiproliferative effects of an aqueous extract from the marine diatom Haslea ostrearia (Simonsen) against solid tumors: lung carcinoma (NSCLC-N6), kidney carcinoma (E39) and melanoma (M96) cell lines. Anticancer Res 19:621–624PubMedGoogle Scholar
  11. Casotti R, Mazza S, Brunet C, Vantrepotte V, Ianora A, Miralto A (2005) Growth inhibition and toxicity of the diatom aldehyde 2-trans, 4-trans-decadienal on Thalassiosira weissflogii (Bacillariophyceae). J Phycol 41:7–20CrossRefGoogle Scholar
  12. Cognie B (2001) Alimentation de l’huitre Crassostrea gigas (Thunberg): Etude des mecanismes de selection des particules et des processus retroactifs entre le bivalve et les microalgues. PhD thesis, University of NantesGoogle Scholar
  13. Da Costa F, Petton B, Mingant C, Bougaran G, Rouxel C, Quéré C, Wikfors GH, Soudant P, Robert R (2015) Influence of one selected Tisochrysis lutea strain rich in lipids on Crassostrea gigas larval development and biochemical composition. Aquac Nutr. doi: 10.1111/anu.12301 Google Scholar
  14. De BC, Meena DK, Behera BK, Das P, Das Mohapatra PK, Sharma AP (2014) Probiotics in fish and shellfish culture: immunomodulatory and ecophysiological responses. Fish Physiol Biochem 40:921–971Google Scholar
  15. Desbois AP, Lebl T, Yan L, Smith VJ (2008) Isolation and structural characterisation of two antibacterial free fatty acids from the marine diatom, Phaeodactylum tricornutum. Appl Microbiol Biotechnol 81:755–764CrossRefPubMedGoogle Scholar
  16. Desbois AP, Mearns-Spragg A, Smith VJ (2009) A fatty acid from the diatom Phaeodactylum tricornutum is antibacterial against diverse bacteria including multi-resistant Staphylococcus aureus (MRSA). Mar Biotechnol 11:45–52CrossRefPubMedGoogle Scholar
  17. Dunstan GA, Volkman JK, Barrett SM, Leroi JM, Jeffrey SW (1994) Essential polyunsaturated fatty acids from 14 species of diatom (Bacillariophyceae). Phytochemistry 35:155–161CrossRefGoogle Scholar
  18. Enright CT, Newkirk GF, Craigie JS, Castell JD (1986) Evaluation of phytoplankton as diets for juvenile Ostrea edulis L. J Exp Mar Biol Ecol 96:1–13CrossRefGoogle Scholar
  19. Figueredo CC, Giani A, Bird DF (2007) Does allelopathy contribute to Cylindrospermopsis raciborskii (Cyanobacteria) bloom occurrence and geographic expansion? J Phycol 43:256–265CrossRefGoogle Scholar
  20. Gaillon B (1820) Des huîtres vertes, et des causes de cette coloration. J Phys Chim d’Histoire Nat des Arts 91:222–225Google Scholar
  21. Gastineau R, Davidovich NA, Bardeau JF, Caruso A, Leignel V, Hardivillier Y, Jacquette B, Davidovich OI, Rince Y, Gaudin P, Cox EJ, Mouget J-L (2012a) Haslea karadagensis (Bacillariophyta): a second blue diatom, recorded from the Black Sea and producing a novel blue pigment. Eur J Phycol 47:469–479CrossRefGoogle Scholar
  22. Gastineau R, Hardivillier Y, Leignel V, Tekaya N, Morançais M, Fleurence J, Davidovich N, Jacquette B, Gaudin P, Hellio C, Bourgougnon N, Mouget J-L (2012b) Greening effect on oysters and biological activities of the blue pigments produced by the diatom Haslea karadagensis (Naviculaceae). Aquaculture 368–369:61–67CrossRefGoogle Scholar
  23. Gastineau R, Pouvreau JB, Hellio C, Morançais M, Fleurence J, Gaudin P, Bourgougnon N, Mouget JL (2012c) Biological activities of purified marennine, the blue pigment responsible for the greening of oysters. J Agric Food Chem 60:3599–3605CrossRefPubMedGoogle Scholar
  24. Gastineau R, Turcotte F, Pouvreau JB et al (2014) Marennine, promising blue pigments from a widespread Haslea diatom species complex. Mar Drugs 12:3161–3189CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gastineau R, Hansen G, Davidovich NA, Davidovich O, Bardeau J-F, Kaczmarska I, Ehrman JM, Leignel V, Hardivillier Y, Jacquette B, Poulin M, Morançais M, Fleurence J, Mouget J-L (2015) A new blue-pigmented hasleoid diatom, Haslea provincialis, from the Mediterranean Sea. Eur J Phycol (accepted)Google Scholar
  26. Granéli E, Hansen PJ (2006) Allelopathy in harmful algae: a mechanism to compete for resources? In: Granéli E, Turner J (eds) Ecology of harmful algae. Springer, Berlin, pp 189–201CrossRefGoogle Scholar
  27. Groth-Nard C (1994) Les lipides des Diatomées: exemple d’Haslea ostrearia (Simonsen), responsable du verdissement des huîtres. PhD Thesis, University of NantesGoogle Scholar
  28. Guedes AC, Malcata FX (2012) Nutritional value and uses of microalgae in aquaculture. In: Muchlisin Z (ed) Aquaculture. InTech, Riejeka. pp 59–78 Google Scholar
  29. Hillebrand H, Dürselen C-D, Kirschtel D, Pollinger U, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:402–424CrossRefGoogle Scholar
  30. Ianora A, Miralto A (2010) Toxigenic effects of diatoms on grazers, phytoplankton and other microbes: a review. Ecotoxicology 19:493–511CrossRefPubMedGoogle Scholar
  31. Inderjit, Duke SO (2003) Ecophysiological aspects of allelopathy. Planta 217:529–539CrossRefPubMedGoogle Scholar
  32. Johansen JR (1991) Morphological variability and cell wall composition of Phaeodactylum tricornutum (Bacillariophyceae). West North Am Nat 51:310–315Google Scholar
  33. Jüttner F (2005) Evidence that polyunsaturated aldehydes of diatoms are repellents for pelagic crustacean grazers. Aquat Ecol 39:271–282CrossRefGoogle Scholar
  34. Jüttner F, Todorova AK, Walch N, von Philipsborn W (2001) Nostocyclamide M: a cyanobacterial cyclic peptide with allelopathic activity from Nostoc 31. Phytochemistry 57:613–619CrossRefPubMedGoogle Scholar
  35. Keating KI (1977) Allelopathic influence on blue-green bloom sequence in a eutrophic lake. Science 196:885–887CrossRefPubMedGoogle Scholar
  36. Lankester ER (1886) On green oysters. Q J Microsc Sci 26:71–94Google Scholar
  37. Leflaive J, Ten-Hage L (2007) Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshw Biol 52:199–214CrossRefGoogle Scholar
  38. Legrand C, Rengefors K, Fistarol GO, Granéli E (2003) Allelopathy in phytoplankton—biochemical, ecological and evolutionary aspects. Phycologia 42:406–419CrossRefGoogle Scholar
  39. Lyczkowski ER, Karp-Boss L (2014) Allelopathic effects of Alexandrium fundyense (Dinophyceae) on Thalassiosira cf. gravida (Bacillariophyceae): a matter of size. J Phycol 50:376–387CrossRefPubMedGoogle Scholar
  40. Marshall R, Mckinley S, Pearce CM (2010) Effects of nutrition on larval growth and survival in bivalves. Rev Aquac 2:33–55CrossRefGoogle Scholar
  41. Medcof J (1945) Green oysters from New Brunswick. Acadian Nat 2:40Google Scholar
  42. Mitchell PH, Barney RL (1918) The occurrence in Virginia of green-gilled oysters similar to those of Marennes. Bull U S Bur Fish 35:135–149Google Scholar
  43. Moreau J (1970) Contribution aux recherches écologiques sur les claires à huîtres du bassin de Marennes-Oléron. Rev Trav l’Institut pêches Marit 34:381–462Google Scholar
  44. Mouget JL, Tremblin G, Morant-Marceau A, Morancais M, Robert JM (1999) Long-term photoacclimation of Haslea ostrearia (Bacillariophyta): effect of irradiance on growth rates, pigment content and photosynthesis. Eur J Phycol 34:109–115CrossRefGoogle Scholar
  45. Mouget JL, Rosa P, Tremblin G (2004) Acclimation of Haslea ostrearia to light of different spectral qualities—confirmation of “chromatic adaptation” in diatoms. J Photochem Photobiol B 75:1–11CrossRefPubMedGoogle Scholar
  46. Mouget JL, Rosa P, Vachoux C, Tremblin G (2005) Enhancement of marennine production by blue light in the diatom Haslea ostrearia. J Appl Phycol 17:437–445CrossRefGoogle Scholar
  47. Mouget J-L, Gastineau R, Davidovich O, Gaudin P, Davidovich NA (2009) Light is a key factor in triggering sexual reproduction in the pennate diatom Haslea ostrearia. FEMS Microbiol Ecol 69:194–201CrossRefPubMedGoogle Scholar
  48. Neuville D, Daste P (1978) Recherches sur le de!terminisme de la production de marennine par la diatomée marine Navicula ostrearia (Gaillon) Bory en culture in vitro. Bot Rev 85:255–303Google Scholar
  49. Paillard C, Le Roux F, Borrego JJ (2004) Bacterial disease in marine bivalves, a review of recent studies: trends and evolution. Aquat Living Resour 17:477–498CrossRefGoogle Scholar
  50. Pernet F, Tremblay R (2004) Effect of varying levels of dietary essential fatty acid during early ontogeny of the sea scallop Placopecten magellanicus. J Exp Mar Bio Ecol 310:73–86CrossRefGoogle Scholar
  51. Pernet F, Bricelj VM, Parrish CC (2005) Effect of varying dietary levels of ω6 polyunsaturated fatty acids during the early ontogeny of the sea scallop, Placopecten magellanicus. J Exp Mar Biol Ecol 327:115–133CrossRefGoogle Scholar
  52. Petersen CG (1916) “Grüne Austern” in Dänemark in 1911–1912. Int Rev Hydrobiol Hydrogr 7:39–41CrossRefGoogle Scholar
  53. Piveteau F (1999) Étude des arômes de l’huître creuse Crassostrea gigas: conséquences d’un affinage à l’aide des microalgues Skeletonema costatum et Haslea ostrearia (Aroma of oyster Crassostrea gigas: effect of supplementation with the microalgae Skeletonema costatum). Doctoral dissertation, NantesGoogle Scholar
  54. Pohnert G, Lumineau O, Cueff A, Adolph S, Cordevant C, Lange M, Poulet S (2002) Are volatile unsaturated aldehydes from diatoms the main line of chemical defence against copepods? Mar Ecol Prog Ser 245:33–45CrossRefGoogle Scholar
  55. Pouvreau JB, Housson E, Le Tallec L, Morançais M, Rincé Y, Fleurence J, Pondaven P (2007) Growth inhibition of several marine diatom species induced by the shading effect and allelopathic activity of marennine, a blue-green polyphenolic pigment of the diatom Haslea ostrearia (Gaillon/Bory) Simonsen. J Exp Mar Bio Ecol 352:212–225CrossRefGoogle Scholar
  56. Pouvreau JB, Morançais M, Taran F, Rosa P, Dufossé L, Guérard F, Pin S, Fleurence J, Pondaven P (2008) Antioxidant and free radical scavenging properties of marennine, a blue-green polyphenols pigment from the diatom Haslea ostrearia (Gaillon/Bory) Simonsen responsible for the natural greening of cultured oysters. J Agric Food Chem 56:6278–6286CrossRefPubMedGoogle Scholar
  57. Rech M, Morant-Manceau A, Tremblin G (2008) Carbon fixation and carbonic anhydrase activity in Haslea ostrearia (Bacillariophyceae) in relation to growth irradiance. Photosynthetica 46:56–62CrossRefGoogle Scholar
  58. Ribalet F, Berges JA, Ianora A, Casotti R (2007) Growth inhibition of cultured marine phytoplankton by toxic algal-derived polyunsaturated aldehydes. Aquat Toxicol 85:219–227CrossRefPubMedGoogle Scholar
  59. Ribalet F, Vidoudez C, Cassin D et al (2009) High plasticity in the production of diatom-derived polyunsaturated aldehydes under nutrient limitation: physiological and ecological implications. Protist 160:444–451CrossRefPubMedGoogle Scholar
  60. Robert JM (1983) Fertilite des claires ostréicoles et verdissement: utilisation de l’azote par les diatomees dominantes. PhD Thesis. University of Nantes (Brittany, France)Google Scholar
  61. Robert JM, Turpin V (1993) La marennine est-elle toxique pour l’algue. Cryptogam Algol 14:89Google Scholar
  62. Robert JM, Morançais M, Pradier E, Mouget J-L, Trembin G (2002) Extraction and quantitative analysis of the blue-green pigment “marennine” synthesized by the diatom Haslea ostrearia. J Appl Phycol 14:299–305CrossRefGoogle Scholar
  63. Sharp JH, Underhill PA, Hughes DJ (1979) Interaction (allelopathy) between marine diatoms: Thalassiosira pseudonana and Phaeodactylum tricornutum. J Phycol 15:353–362CrossRefGoogle Scholar
  64. Sprat T (1669) The history of the generation and ordering of green oysters, commonly called Colchester oysters. In: The history of the Royal-Society of London, for the Improving of natural knowledge. The Royal Society, London, 307–319Google Scholar
  65. Sun Y, Xu S, Li W, Zhang J, Wang C (2012) Antialgal substances from Isochrysis galbana and its effects on the growth of Isochrysis galbana and six species of feed microalgae. In: Zhu E, Sambath S (eds) Information technology and agricultural engineering. Springer, Berlin, pp 211–223CrossRefGoogle Scholar
  66. Takano K, Igarashi S, Mikami H, Hino S (2003) Causation of reversal simultaneity for diatom biomass and density of Phormidium tenue during the warm season in eutrophic Lake Barato, Japan. Limnology 4:73–78CrossRefGoogle Scholar
  67. Tang YZ, Gobler CJ (2011) The green macroalga, Ulva lactuca, inhibits the growth of seven common harmful algal bloom species via allelopathy. Harmful Algae 10:480–488CrossRefGoogle Scholar
  68. Tesson B, Gaillard C, Martin-Jézéquel V (2009) Insights into the polymorphism of the diatom Phaeodactylum tricornutum Bohlin. Bot Mar 52:104–116CrossRefGoogle Scholar
  69. Tillmann U (2003) Kill and eat your predator: a winning strategy of the planktonic flagellate Prymnesium parvum. Aquat Microb Ecol 32:73–84CrossRefGoogle Scholar
  70. Tillmann U, John U, Cembella A (2007) On the allelochemical potency of the marine dinoflagellate Alexandrium ostenfeldii against heterotrophic and autotrophic protists. J Plankton Res 29:527–543CrossRefGoogle Scholar
  71. Tillmann U, Alpermann T, John U, Cembella A (2008) Allelochemical interactions and short-term effects of the dinoflagellate Alexandrium on selected photoautotrophic and heterotrophic protists. Harmful Algae 7:52–64CrossRefGoogle Scholar
  72. Turpin V, Robert JM, Goulletquer P (1999) Limiting nutrients of oyster pond seawaters in the Marennes-Oleron region for Haslea ostrearia: applications to the mass production of the diatom in mesocosm experiments. Aquat Living Resour 12:335–342CrossRefGoogle Scholar
  73. Van den Bogaard A, Stobberingh EE (2000) Epidemiology of resistance to antibiotics. Links between animals and humans. Int J Antimicrob Agents 14:327–335Google Scholar
  74. Vasconcelos MTSD, Leal MFC (2008) Exudates of different marine algae promote growth and mediate trace metal binding in Phaeodactylum tricornutum. Mar Environ Res 66:499–507CrossRefPubMedGoogle Scholar
  75. Volkman JK, Jeffrey SW, Nichols PD, Rogers GI, Garland CD (1989) Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J Exp Mar Biol Ecol 128:219–240CrossRefGoogle Scholar
  76. Yamasaki Y, Nagasoe S, Matsubara T, Shikata T, Shimasaki Y, Oshima Y, Honjo T (2007) Allelopathic interactions between the bacillariophyte Skeletonema costatum and the raphidophyte Heterosigma akashiwo. Mar Ecol Prog Ser 339:83–92Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Fiddy S. Prasetiya
    • 1
  • Ikha Safitri
    • 1
  • Ita Widowati
    • 2
  • Bruno Cognie
    • 3
  • Priscilla Decottignies
    • 3
  • Romain Gastineau
    • 1
  • Michèle Morançais
    • 3
  • Eko Windarto
    • 1
  • Réjean Tremblay
    • 4
  • Jean-Luc Mouget
    • 1
  1. 1.Laboratoire Mer Molécules Santé (MMS), FR CNRS 3473 IUML, Faculté des Sciences et TechniquesUniversité du MaineLe MansFrance
  2. 2.Marine Science Department, Kampus FPIK UNDIPDiponegoro UniversitySemarangIndonesia
  3. 3.Laboratoire Mer Molécules Santé, FR CNRS 3473 IUML, Faculté des Sciences et TechniquesUniversité de NantesNantesFrance
  4. 4.Institut des Sciences de la mer de RimouskiUniversité du Québec à RimouskiRimouskiCanada

Personalised recommendations