Journal of Applied Phycology

, Volume 28, Issue 4, pp 2539–2548 | Cite as

Comprehensive quantification and genome survey reveal the presence of novel phytohormone action modes in red seaweeds

  • Koji MikamiEmail author
  • Izumi C. Mori
  • Takakazu Matsuura
  • Yoko Ikeda
  • Mikiko Kojima
  • Hitoshi Sakakibara
  • Takashi Hirayama


Emerging work has suggested the existence of phytohormones in seaweeds, although chemical species, endogenous biosynthetic pathways, and signal transduction machineries remain poorly understood. We performed profiling of nine phytohormones with liquid chromatography-mass spectrometry and in silico genome-wide homology search to identify genes involved in biosynthesis and signal transduction of hormones in red algae. It was demonstrated that two Bangiophycean algae, Bangia fuscopurpurea and Pyropia yezoensis, possessed indoleacetic acid (IAA), N 6-(Δ2-isopentenyl)adenine (iP), abscisic acid (ABA), and salicylic acid, although trans-zeatin, dihydrozeatin, gibberellin A1 and A4, and jasmonate were not detected. Results of genome-wide survey demonstrated that Bangiophycean algae produce iP and ABA via pathways similar to those in terrestrial plants. However, these seaweeds lack homologues of already known factors participating in perception and signal transduction of IAA, iP, ABA and SA, indicating that the action modes of these phytohormones in red seaweeds differ from those elucidated in terrestrial plants. These findings shed lights on evolutional divergence of signal transduction pathways of phytohormones in plants.


Bangia fuscopurpurea Liquid chromatography-tandem mass spectrometry Phytohormone Pyropia yezoensis Quantitative profiling Comparative genomics 



We are grateful to the Marine Resources Research Center of Aichi Fisheries Research Institute for kindly providing P. yezoensis strain U51. The hormone analysis reported herein was supported by the Japan Advanced Plant Science Network. This work was also supported in part by the Joint Research Program implemented at the Institute of Plant Science and Resources, Okayama University, Japan, and KAKENHI Grants (Nos. 2566016003 and 15H04539 to K.M.).

Supplementary material

10811_2015_759_MOESM1_ESM.pdf (37 kb)
ESM 1 (PDF 36 kb)
10811_2015_759_MOESM2_ESM.pdf (22 kb)
ESM 2 (PDF 22 kb)
10811_2015_759_MOESM3_ESM.pdf (81 kb)
ESM 3 (PDF 80.7 kb)
10811_2015_759_MOESM4_ESM.pdf (145 kb)
ESM 4 (PDF 144 kb)
10811_2015_759_MOESM5_ESM.pdf (80 kb)
ESM 5 (PDF 80 kb)
10811_2015_759_MOESM6_ESM.pdf (149 kb)
ESM 6 (PDF 148 kb)
10811_2015_759_MOESM7_ESM.pdf (167 kb)
ESM 7 (PDF 167 kb)
10811_2015_759_MOESM8_ESM.pdf (56 kb)
ESM 8 (PDF 56 kb)
10811_2015_759_MOESM9_ESM.pdf (65 kb)
ESM 9 (PDF 64 kb)
10811_2015_759_MOESM10_ESM.pdf (14 kb)
ESM 10 (PDF 14 kb)


  1. Ashen JB, Cohen JD, Goff LJ (1999) GC-SIM-MS detection and quantification of free indole-3-acetic acid in bacterial galls on the marine alga Prionitis lanceolata (Rhodophyta). J Phycol 35:493–500CrossRefGoogle Scholar
  2. Basu S, Sun H, Brian L, Quatrano RL, Muday GK (2002) Early embryo development in Fucus distichus is auxin sensitive. Plant Physiol 130:292–302CrossRefPubMedPubMedCentralGoogle Scholar
  3. Craigie JS (2011) Seaweed extract stimuli in plant science and agriculture. J Appl Phycol 23:371–393CrossRefGoogle Scholar
  4. Chan CX, Blouin NA, Zhuang Y, Zäuner S, Prochnik SE, Lindquist E, Lin S, Benning C, Lohr M, Yarish C, Gantt E, Grossman AR, Lu S, Müller K, Stiller J, Brawley SH, Bhattacharya D (2012a) Porphyra (Bangiophyceae) transcriptomes provide insights into red algal development and metabolism. J Phycol 48:1328–1342CrossRefPubMedGoogle Scholar
  5. Chan CX, Zäuner S, Wheeler GL, Grossman AR, Prochnik SE, Blouin NA, Zhuang Y, Benning C, Berg GM, Yarish C, Eriksen RL, Klein AS, Lin S, Levine I, Brawley SH, Bhattacharya D (2012b) Analysis of Porphyra membrane transporters demonstrates gene transfer among photosynthetic eukaryotes and numerous sodium-coupled transport systems. Plant Physiol 158:2001–2012CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679CrossRefPubMedGoogle Scholar
  7. Davidson FF (1950) The effects of auxin on the growth of marine algae. Am J Bot 37:502–510CrossRefGoogle Scholar
  8. De Smet I, Voß U, Lau S, Wilson M, Shao N, Timme RE, Swarup R, Kerr I, Hodgman C, Bock R, Bennett M, Jürgens G, Beeckman T (2011) Unraveling the evolution of auxin signaling. Plant Physiol 155:209–221CrossRefPubMedGoogle Scholar
  9. Dorrell RG, Smith AG (2011) Do red and green make brown?: perspectives on plastid acquisitions within chromalveolates. Eukaryot Cell 10:856–868CrossRefPubMedPubMedCentralGoogle Scholar
  10. Endo A, Nelson KM, Thoms K, Abrams SR, Nambara E, Sato Y (2014) Functional characterization of xanthoxin dehydrogenase in rice. J Plant Physiol 171:1231–1240CrossRefPubMedGoogle Scholar
  11. Esteban R, Martínez B, Fernández-Marín B, Becerril JM, García-Plazaola JI (2009) Carotenoid composition in Rhodophyta: insights into xanthophyll regulation in Corallina elongata. Eur J Phycol 44:221–230CrossRefGoogle Scholar
  12. Gupta V, Kumar M, Brahmbhatt H, Reddy CR, Seth A, Jha B (2011) Simultaneous determination of different endogenetic plant growth regulators in common green seaweeds using dispersive liquid-liquid microextraction method. Plant Physiol Biochem 49:1259–1263CrossRefPubMedGoogle Scholar
  13. Hirata R, Takahashi M, Saga N, Mikami K (2011) Transient gene expression system established in Porphyra yezoensis is widely applicable in Bangiophycean algae. Mar Biotechnol 13:1038–1047CrossRefPubMedGoogle Scholar
  14. Izumi Y, Okazawa A, Bamba T, Kobayashi A, Fukusaki E (2009) Development of a method for comprehensive and quantitative analysis of plant hormones by highly sensitive nanoflow liquid chromatography-electrospray ionization-ion trap mass spectrometry. Anal Chim Acta 648:215–225CrossRefPubMedGoogle Scholar
  15. Jacobs WP, Falkenstein K, Hamilton RH (1985) Nature and amount of auxin in algae. IAA from extracts of Caulerpa paspaloides (Siphonales). Plant Physiol 78:844–848CrossRefPubMedPubMedCentralGoogle Scholar
  16. Jahns P, Holzwarth AR (2012) The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim Biophys Acta 1817:182–193CrossRefPubMedGoogle Scholar
  17. Johri MM (2008) Hormonal regulation in green plant lineage families. Physiol Mol Biol Plants 14:23–38CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kanno Y, Jikumaru Y, Hanada A, Nambara E, Abrams SR, Kamiya Y, Seo M (2010) Comprehensive hormone profiling in developing Arabidopsis seeds: examination of the site of ABA biosynthesis, ABA transport and hormone interactions. Plant Cell Physiol 51:1988–2001CrossRefPubMedGoogle Scholar
  19. Khan W, Rayirath UP, Subramanian S, Jithesh MN, Rayorath P, Mark Hodges D, Critchley AT, Craigie JS, Norrie J, Prithiviraj B (2009) Seaweed extracts as biostimulants of plant growth and development. J Plant Growth Regul 28:386–399CrossRefGoogle Scholar
  20. Kiseleva AA, Tarachovskaya ER, Shishova MF (2012) Biosynthesis of phytohormones in algae. Russ J Plant Physiol 59:595–610CrossRefGoogle Scholar
  21. Kitade Y, Fukuda S, Nakajima M, Watanabe T, Saga N (2002) Isolation of a cDNA encoding a homologue of actin from Porphyra yezoensis (Rhodophyta). J Appl Phycol 14:135–141CrossRefGoogle Scholar
  22. Klingler JP, Batelli G, Zhu JK (2010) ABA receptors: the START of a new paradigm in phytohormone signalling. J Exp Bot 61:3199–3210CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kojima M, Kamada-Nobusada T, Komatsu H, Takei K, Kuroha T, Mizutani M, Ashikari M, Ueguchi-Tanaka M, Matsuoka M, Suzuki K, Sakakibara H (2009) Highly sensitive and high-throughput analysis of plant hormones using MS-probe modification and liquid chromatography-tandem mass spectrometry: an application for hormone profiling in Oryza sativa. Plant Cell Physiol 50:1201–1214CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kuroha T, Tokunaga H, Kojima M, Ueda N, Ishida T, Nagawa S, Fukuda H, Sugimoto K, Sakakibara H (2009) Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. Plant Cell 21:3152–3169CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lau S, Shao N, Bock R, Jürgens G, De Smet I (2009) Auxin signaling in algal lineages: fact or myth? Trends Plant Sci 14:182–188CrossRefPubMedGoogle Scholar
  26. Le Bail A, Billoud B, Kowalczyk N, Kowalczyk M, Gicquel M, Le Panse S, Stewart S, Scornet D, Cock JM, Ljung K, Charrier B (2010) Auxin metabolism and function in the multicellular brown alga Ectocarpus siliculosus. Plant Physiol 153:128–144CrossRefPubMedPubMedCentralGoogle Scholar
  27. Le Corguillé G, Pearson G, Valente M, Viegas C, Gschloessl B, Corre E, Bailly X, Peters AF, Jubin C, Vacherie B, Cock JM, Leblanc C (2009) Plastid genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus: further insights on the evolution of red-algal derived plastids. BMC Evol Biol 9:253. doi: 10.1186/1471-2148-9-253 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lin R, Stekoll MS (2007) Effects of plant growth substances on the conchocelis phase of Alaskan Porphyra (Bangiales, Rhodophyta) species in conjunction with environmental variables. J Phycol 43:1094–1103CrossRefGoogle Scholar
  29. Mikami K, Hosokawa M (2013) Biosynthetic pathway and health benefits of fucoxanthin, an algae-specific xanthophyll in brown seaweeds. Int J Mol Sci 14:13763–13781CrossRefPubMedPubMedCentralGoogle Scholar
  30. Mikami K, Kanesaki Y, Suzuki I, Murata N (2002) The histidine kinase Hik33 perceives osmotic stress and cold stress in Synechocystis sp. PCC 6803. Mol Microbiol 46:905–915CrossRefPubMedGoogle Scholar
  31. Mikami K, Murata N (2003) Membrane fluidity and the perception of environmental signals in cyanobacteria and plants. Prog Lipid Res 42:527–543CrossRefPubMedGoogle Scholar
  32. Nakamura Y, Sasaki N, Kobayashi M, Ojima N, Yasuike M, Shigenobu Y, Satomi M, Fukuma Y, Shiwaku K, Tsujimoto A, Kobayashi T, Nakayama I, Ito F, Nakajima K, Sano M, Wada T, Kuhara S, Inouye K, Gojobori T, Ikeo K (2013) The first symbiont-free genome sequence of marine red alga, Susabi-nori (Pyropia yezoensis). PLoS ONE 8:e57122CrossRefPubMedPubMedCentralGoogle Scholar
  33. Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185CrossRefPubMedGoogle Scholar
  34. Nozaki H, Maruyama S, Matsuzaki M, Nakada T, Kato S, Misawa K (2009) Phylogenetic positions of Glaucophyta, green plants (Archaeplastida) and Haptophyta (Chromalveolata) as deduced from slowly evolving nuclear genes. Mol Phylogenet Evol 53:872–880CrossRefPubMedGoogle Scholar
  35. Puthiyaveetil S, Allen JF (2009) Chloroplast two-component systems: evolution of the link between photosynthesis and gene expression. Proc R Soc B 276:2133–2145CrossRefPubMedPubMedCentralGoogle Scholar
  36. Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449CrossRefPubMedGoogle Scholar
  37. Sanderson KJ, Jameson PE, Zabkiewicz JA (1987) Auxin in a seaweed extract: identification and quantification of indole-3-aceric acid by gas chromatography–mass spectrometry. J Plant Physiol 129:363–367CrossRefGoogle Scholar
  38. Stiller JW, Perry J, Rymarquis LA, Accerbi M, Green PJ, Prochnik S, Lindquist E, Chan CX, Yarish C, Lin S, Zhuang Y, Blouin NA, Brawley SH (2012) Major developmental regulators and their expression in two closely related species of Porphyra (Rhodophyta). J Phycol 48:883–896CrossRefPubMedGoogle Scholar
  39. Schubert N, García-Mendoza E, Pacheco-Ruiz I (2006) Carotenoid composition of marine red algae. J Phycol 42:1208–1216CrossRefGoogle Scholar
  40. van Staden J, Drewes FE (1991) The biological activity of cytokinin derivatives in the soybean callus bioassay. Plant Growth Regul 10:109–115CrossRefGoogle Scholar
  41. Stirk WA, Novák O, Strnad M, van Staden J (2003) Cytokinins in macralgae. Plant Growth Regul 40:13–24CrossRefGoogle Scholar
  42. Stirk WA, Arthur GD, Lourens AF, Novák O, Strnad M, van Staden J (2004) Changes in cytokinin and auxin concentrations in seaweed concentrates when stored at an elevated temperature. J Appl Phycol 16:31–39CrossRefGoogle Scholar
  43. Stirk WA, Novák O, Hradecká V, Pĕnčík A, Rolčík J, Strnad M, van Staden J (2009) Endogenous cytokinins, auxins and abscisic acid in Ulva fasciata (Chlorophyta) and Dictyota humifusa (Phaeophyta): towards understanding their biosynthesis and homeostasis. Eur J Phycol 44:231–240CrossRefGoogle Scholar
  44. Stirk WA, Tarkowská D, Turečová V, Strnad M, van Staden J (2014) Abscisic acid, gibberellins and brassinosteroids in Kelpak, a commercial seaweed extract made from Ecklonia maxima. J Appl Phycol 26:561–567CrossRefGoogle Scholar
  45. Takezawa D, Komatsu K, Sakata Y (2011) ABA in bryophytes: how a universal growth regulator in life became a plant hormone? J Plant Res 124:437–453CrossRefPubMedGoogle Scholar
  46. Tanaka K (2011) Chloroplast transcription machinery of red algae: conservation of four types of transcriptional regulators in non-green chloroplasts. In: Mikami K (ed) Porphyra yezoensis: frontiers in physiological and molecular biological research. Nova Science Publishers, New York, pp 39–60Google Scholar
  47. Tay SAB, MacLeod JK, Palni LMS, Letham DS (1985) Detection of cytokinins in a seaweed extract. Phytochem 23:2611–2614CrossRefGoogle Scholar
  48. To JP, Kieber JJ (2008) Cytokinin signaling: two-components and more. Trends Plant Sci 13:85–92CrossRefPubMedGoogle Scholar
  49. Tokuda M, Jikumaru Y, Matsukura K, Takebayashi Y, Kumashiro S, Matsumura M, Kamiya Y (2013) Phytohormones related to host plant manipulation by a gall-inducing leafhopper. PLoS ONE 8:e62350CrossRefPubMedPubMedCentralGoogle Scholar
  50. Vanstraelen M, Benková E (2012) Hormonal interactions in the regulation of plant development. Annu Rev Cell Dev Biol 28:463–487CrossRefPubMedGoogle Scholar
  51. Wang C, Liu Y, Li SS, Han GZ (2015) Insights into the origin and evolution of plant hormone signaling machinery. Plant Physiol. doi: 10.1104/pp. 114.247403 Google Scholar
  52. Wang X, Zhao P, Liu X, Chen J, Xu J, Chen H, Yan X (2014) Quantitative profiling method for phytohormones and betaines in algae by liquid chromatography electrospray ionization tandem mass spectrometry. Biomed Chromatogr 28:275–280CrossRefPubMedGoogle Scholar
  53. Weyers JDB, Paterson NW (2001) Plant hormones and the control of physiological processes. New Phytol 152:375–407CrossRefGoogle Scholar
  54. Yang LE, Huang XQ, Hang Y, Deng YY, Lu QQ, Lu S (2014) The P450-type carotene hydroxylase PuCHY1 from Porphyra suggests the evolution of carotenoid metabolism in red algae. J Integr Plant Biol 56:902–915CrossRefPubMedGoogle Scholar
  55. Yokoya NS, Handro W (1996) Effects of auxins and cytokinins on tissue culture of Grateloupia dichotoma (Gigartinales, Rhodophyta). Hydrobiologia 326/327:393–400Google Scholar
  56. Yokoya NS, Stirk WA, van Staden J, Novák O, Turečková V, Pěnčík A, Strnad M (2010) Endogenous cytokinins, auxins, and abscisic acid in red algae from Brazil. J Phycol 46:1198–1205CrossRefGoogle Scholar
  57. Yue J, Hu X, Huang J (2014) Origin of plant auxin biosynthesis. Trends Plant Sci 19:764–770CrossRefPubMedGoogle Scholar
  58. Zhang W, Yamane H, Chapman DJ (1993) The phytohormone profile of the red alga Porphyra perforata. Bot Mar 36:257–266Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Koji Mikami
    • 1
    Email author
  • Izumi C. Mori
    • 2
  • Takakazu Matsuura
    • 2
  • Yoko Ikeda
    • 2
  • Mikiko Kojima
    • 3
  • Hitoshi Sakakibara
    • 3
  • Takashi Hirayama
    • 2
  1. 1.Faculty of Fisheries SciencesHokkaido UniversityHakodateJapan
  2. 2.Institute of Plant Science and ResourcesOkayama UniversityKurashikiJapan
  3. 3.RIKEN Center for Sustainable Resource ScienceYokohamaJapan

Personalised recommendations