Advertisement

Journal of Applied Phycology

, Volume 28, Issue 3, pp 1543–1552 | Cite as

Roles of nitrogen and phosphorus in growth responses and toxin production (using LC-MS/MS) of tropical Microcystis ichthyoblabe and M. flos-aquae

  • Maxine A. D. Mowe
  • Feras Abbas
  • Cristina Porojan
  • Simon M. Mitrovic
  • Richard P. Lim
  • Ambrose Furey
  • Darren C. J. YeoEmail author
Article

Abstract

In experiments investigating nutrient effects on tropical Microcystis, increasing nitrogen and phosphorus concentrations were found to have a significant positive effect on maximum cell yields of two strains of Microcystis ichthyoblabe (from Lower Peirce and Tengeh Reservoirs) and one strain of Microcystis flos-aquae isolated (Lower Peirce Reservoir) from Singapore. However, only increasing nitrogen concentration had a positive effect on growth rates of M. ichthyoblabe and M. flos-aquae from Lower Peirce Reservoir. MC-RR and MC-LR were produced by all three strains with MC-RR being the dominant variant. Phosphorus played an important role in MC production with increases in phosphorus from medium to high concentrations leading to decreases in MC-RR cell quotas for all three strains at the two highest nitrogen levels tested. The different growth and toxin production responses between M. ichthyoblabe strains could be due to location-specific differences.

Keywords

Blooms Cyanobacteria Microcystins Nutrients Singapore 

Notes

Acknowledgments

Funding support for this study was provided by a research grant from the Public Utilities Board of Singapore (National University of Singapore Grant No. R-154-000-523-490), an AcRF Tier 1 grant from the Singapore Ministry of Education (National University of Singapore Grant No. R-154-000-465-133), and the National University of Singapore Industrial Postgraduate Program. Both of the CIT postgraduates (FA and CP) contributed equally to CITs input to this manuscript.

References

  1. Allis O, Dauphard J, Hamilton B, Ni Shuilleabhain A, Lehane M, James KJ, Furey A (2007) Liquid chromatography-tandem mass spectrometry application, for the determination of extracellular hepatotoxins in Irish lake and drinking waters. Anal Chem 79:3436–3447CrossRefPubMedGoogle Scholar
  2. Baker JA, Entsch B, Neilan BA, McKay DB (2002) Monitoring changing toxigenicity of a cyanobacterial bloom by molecular methods. Appl Env Microbiol 68:6070–6076CrossRefGoogle Scholar
  3. Baldia SF, Evangelista AD, Aralar EV, Santiago AE (2007) Nitrogen and phosphorus utilization in the cyanobacterium Microcystis aeruginosa isolated from Laguna de Bay, Philippines. J Appl Phycol 19:607–613CrossRefGoogle Scholar
  4. Bolch CJS, Blackburn SI (1996) Isolation and purification of Australian isolates of the toxic cyanobacterium Microcystis aeruginosa Kütz. J Appl Phycol 8:5–13CrossRefGoogle Scholar
  5. Briand J-F, Jacquet S, Bernard C, Humbert J-F (2003) Health hazards for terrestrial vertebrates from toxic cyanobacteria in surface water ecosystems. Vet Res 34:361–377CrossRefPubMedGoogle Scholar
  6. Briand E, Bormans M, Quiblier C, Salenc¸on M-J, Humbert J-F (2012) Evidence of the cost of the production of microcystins by Microcystis aeruginosa under differing light and nitrate environmental conditions. PLoS ONE 7(1):e29981CrossRefPubMedPubMedCentralGoogle Scholar
  7. Carmichael WW, Azevedo SMFO, An JS, Molica RJR, Jochimsen EM, Lau S, Rinehart KL, Shaw GR, Eaglesham GK (2001) Human fatalities from cyanobacteria: chemical and biological evidence for cyanotoxins. Environ Health Perspect 109:663–668CrossRefPubMedPubMedCentralGoogle Scholar
  8. Davis TW, Berry DL, Boyer GL, Gobler CJ (2009) The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 8:715–725CrossRefGoogle Scholar
  9. Downing TG, Sember CS, Gehringer MM, Leukes W (2005) Medium N:P ratios and specific growth rate comodulate microcystin and protein content in Microcystis aeruginosa PCC7806 and M. aeruginosa UV027. Microbial Ecol 49:468–473CrossRefGoogle Scholar
  10. Havens KE (2008) Cyanobacteria blooms: effects on aquatic ecosystems. In: Hudnell HK (ed) Cyanobacterial harmful algal blooms: state of the science and research needs. Springer, New York, pp 733–746CrossRefGoogle Scholar
  11. Hötzel G, Croome R (1999) A phytoplankton methods manual for Australian freshwaters. Land and Water Resources Research and Development Corporation. Canberra, AustraliaGoogle Scholar
  12. Imai H, Chang KH, Nakano SI (2009) Growth responses of harmful algal species Microcystis (cyanophyceae) under various environmental conditions. In: Obayashi Y, Isobe T, Subramanian A, Suzuki S, Tanabe S (eds) Interdisciplinary Studies on Environmental Chemistry — Environmental Research in Asia, pp. 269–275Google Scholar
  13. Kardinaal WE, Tonk L, Janse I, Hol S, Slot P, Huisman J, Visser PM (2007) Competition for light between toxic and nontoxic strains of the harmful cyanobacterium Microcystis. Appl Env Microbiol 73:2939–2946CrossRefGoogle Scholar
  14. Khoo H-W, Yang SL, Goh C-J (1977) A preliminary limnological study of Seletar Reservoir. J Singapore Natl Acad Sci 6:1–12Google Scholar
  15. Krüger T, Hölzel N, Luckas B (2012) Influence of cultivation parameters on growth and microcystin production of Microcystis aeruginosa (Cyanophyceae) isolated from Lake Chao (China). Microbial Ecol 63:199–209CrossRefGoogle Scholar
  16. Lee SJ, Jang M-H, Kim H-S, Yoon B-D, Oh H-M (2000) Variation of microcystin content of Microcystis aeruginosa relative to medium N:P ratio and growth stage. J Appl Microbiol 89:323–329CrossRefPubMedGoogle Scholar
  17. Low EW, Clews E, Todd PA, Tai YC, Ng PKL (2010) Top-down control of phytoplankton by zooplankton in tropical reservoirs in Singapore? Raffles Bull Zool 58:311–322Google Scholar
  18. Meriluoto J (2005) Selection of analytical methodology. In: Meriluoto J, Codd GA (eds) Toxic—cyanobacterial monitoring and cyanotoxin analysis. Åbo Akademi University Press, Finland, pp 49–50Google Scholar
  19. Mitrovic SM, Hardwick L, Dorani F (2011) Use of flow management to mitigate cyanobacterial blooms in the Lower Darling River, Australia. J Plankton Res 33:229–241Google Scholar
  20. Mitrovic SM, Oliver RL, Rees C. Bowling LC, Buckney RT (2003) Critical flow rates for the growth and dominance of Anabaena circinalis in some turbid freshwater rivers. Freshwater Biol 58:164–172Google Scholar
  21. Mowe MAD, Mitrovic SM, Lim RP, Furey A, Yeo DCJ (2015) Tropical cyanobacterial blooms: a review of prevalence, problem taxa, toxins and influencing environmental factors. J Limnol. doi: 10.4081/jlimnol.2014.1005 Google Scholar
  22. Müller S, Mitrovic SM (2014) Phytoplankton co-limitation by nitrogen and phosphorus in a shallow reservoir: progressing from the phosphorus limitation paradigm. Hydrobiologia. doi: 10.1007/s10750-014-2082-3 Google Scholar
  23. O’Neil JM, Davis TW, Burford MA, Gobler CJ (2012) The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14:313–334CrossRefGoogle Scholar
  24. Oh H, Lee SJ, Jang M, Yoon B (2000) Microcystin production by Microcystis aeruginosa in a phosphorus-limited chemostat. Appl Env Microbiol 66:176–179CrossRefGoogle Scholar
  25. Orr PT, Jones GJ (1998) Relationship between microcystin production and cell division rates in nitrogen-limited Microcystis aeruginosa cultures. Limnol Oceanogr 43:1604–1614CrossRefGoogle Scholar
  26. Ortea PM, Allis O, Healy BM, Lehane M, Ni Shuilleabhain A, Furey A, James KJ (2004) Chemosphere 55:1395–1402CrossRefPubMedGoogle Scholar
  27. Otsuka S, Suda S, Shibata S, Oyaizu H, Matsumoto S, Watanabe MM (2001) A proposal for the unification of five species of the cyanobacterial genus Microcystis Kützing ex Lemmermann 1907 under the Rules of the Bacteriological Code. Int J Systemat Evol Microbiol 51:873–879CrossRefGoogle Scholar
  28. Padilla C, Sanz-Alférez S, del Campo FF (2006) Toxin characterisation and identification of a Microcystis flos-aquae strain from a Spanish drinking-water reservoir. Arch Hydrobiol 165:383–399CrossRefGoogle Scholar
  29. Paerl HW, Huisman J (2008) Blooms like it hot. Science 320:57–58CrossRefPubMedGoogle Scholar
  30. Paerl HW, Hall NS, Calandrino ES (2011a) Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci Total Environ 409:1739–1745CrossRefPubMedGoogle Scholar
  31. Paerl HW, Xu H, McCarthy MJ, Zhu G, Qin B, Li Y, Gardner WS (2011b) Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): The need for a dual nutrient (N & P) management strategy. Water Res 45:1973–1983CrossRefPubMedGoogle Scholar
  32. Rapala J, Sivonen K, Lyra C, Niemela SI (1997) Variation of microcystins, cyanobacterial hepatotoxins, in Anabaena spp. as a function of growth stimuli. Appl Env Microbiol 63:2206–2212Google Scholar
  33. Sabour B, Loudiki M, Oudra B, Vasconcelos V, Martins R, Oubraim S, Fawzi B (2002) Toxicology of a Microcystis ichthyoblabe waterbloom from Lake Oued Mellah (Morocco). Environ Toxicol 17:24–31CrossRefPubMedGoogle Scholar
  34. Sabour B, Loudiki M, Vasconcelos V (2009) Growth responses of Microcystis ichthyoblabe Kützing and Anabaena aphanizomenoides Forti (cyanobacteria) under different nitrogen and phosphorus conditions. Chem Ecol 25:337–344CrossRefGoogle Scholar
  35. Sivonen K (1990) Effects of light, temperature, nitrate, orthophosphate, and bacteria on growth of and hepatotoxin production by Oscillatoria agardhii strains. Appl Env Microbiol 56:2658–2666Google Scholar
  36. Sivonen K, Jones G (1999) Cyanobacterial toxins. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water. E & Spon Press, London, pp 38–68Google Scholar
  37. Song L, Sano T, Li R, Watanabe MM, Liu Y, Kaya K (1998) Microcystin production of Microcystis viridis (cyanobacteria) under different culture conditions. Phycol Res 46:19–23CrossRefGoogle Scholar
  38. Steffen MM, Belisle BS, Watson SB, Boyer GL, Wilhelm SW (2014) Status, causes and controls of cyanobacterial blooms in Lake Erie. J Great Lakes Res 40:215–225CrossRefGoogle Scholar
  39. Tan YS, Lee JT, Tan K (2009) Clean, Green and Blue. ISEAS Publishing, SingaporeGoogle Scholar
  40. Te SH, Gin KY-H (2011) The dynamics of cyanobacteria and microcystin production in a tropical reservoir of Singapore. Harmful Algae 10:319–329CrossRefGoogle Scholar
  41. Utkilen H, Gjølme N (1995) Iron-Stimulated toxin production in Microcystis aeruginosa. Appl Environ Microbiol 61:797–800PubMedPubMedCentralGoogle Scholar
  42. Vézie C, Rapala J, Vaitomaa J, Seitsonen J, Sivonen K (2002) Effect of nitrogen and phosphorus on growth of toxic and nontoxic Microcystis strains and on intracellular microcystin concentrations. Microbial Ecol 43:443–454CrossRefGoogle Scholar
  43. Via-Ordorika L, Fastner J, Kurmayer R, Hisbergues M, Dittmann E, Komarek J, Erhard M, Chorus I (2004) Distribution of microcystin-producing and non-microcystin-producing Microcystis sp. in European freshwater bodies: detection of microcystins and microcystin genes in individual colonies. Systematic Appl Microbiol 27:592–602CrossRefGoogle Scholar
  44. Wang X, Qin B, Gao G, Paerl HW (2010) Nutrient enrichment and selective predation by zooplankton promote Microcystis (Cyanobacteria) bloom formation. J Plankton Res 32:457–470CrossRefGoogle Scholar
  45. Watanabe MF (1996) Isolation, cultivation and classification of bloom-forming Microcystis in Japan. In: Watanabe MF (ed) Toxic Microcystis. CRC Press, Boca Raton, pp 13–34Google Scholar
  46. Watanabe MF, Oishi S (1985) Effects of environmental factors on toxicity of a cyanobacterium (Microcystis aeruginosa) under culture conditions. Appl Env Microbiol 49:1342–1344Google Scholar
  47. Wicks RJ, Thiel PT (1990) Environmental factors affecting the production of peptide toxins in floating scums of the cyanobacterium Microcystis aeruginosa in a hypertrophic African reservoir. Environ Sci Technol 24:1413–1418CrossRefGoogle Scholar
  48. Yang SL, Tai YC (1991) Algae and algal blooms in Singapore reservoirs. Public Utilities Board Res Develop J 5:17–27Google Scholar
  49. Yang Z, Geng L, Wang W, Zhang J (2012) Combined effects of temperature, light intensity, and nitrogen concentration on the growth and polysaccharide content of Microcystis aeruginosa in batch culture. Biochem Systemat Ecol 41:130–135CrossRefGoogle Scholar
  50. Zhai C, Song S, Zou S, Liu C, Xue Y (2013) The mechanism of competition between two bloom-forming Microcystis species. Freshwater Biol 58:1831–1839CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Maxine A. D. Mowe
    • 1
  • Feras Abbas
    • 2
  • Cristina Porojan
    • 2
  • Simon M. Mitrovic
    • 1
    • 3
  • Richard P. Lim
    • 3
  • Ambrose Furey
    • 2
  • Darren C. J. Yeo
    • 1
    Email author
  1. 1.Department of Biological SciencesNational University of SingaporeSingaporeSingapore
  2. 2.Mass Spectrometry Research Centre (MSRC), Department of Physical SciencesCork Institute of Technology (CIT)BishopstownIreland
  3. 3.School of the EnvironmentUniversity of Technology, SydneyBroadwayAustralia

Personalised recommendations