Journal of Applied Phycology

, Volume 28, Issue 2, pp 1403–1417 | Cite as

Cloning, expression, and characterization of carbonic anhydrase genes from Pyropia haitanensis (Bangiales, Rhodophyta)

  • Changsheng Chen
  • Zhenzhen Dai
  • Yan Xu
  • Dehua Ji
  • Chaotian XieEmail author


Carbonic anhydrases (CAs) play important roles in the utilization of inorganic carbon and have been studied in many higher plants and algae. Herein, based on unigene sequences from Pyropia haitanensis, six full-length CA of P. haitanensis (PhCA) genes were obtained by rapid amplification of complementary DNA (cDNA) ends, or by direct polymerase chain reaction (PCR), and named PhαCA1, PhαCA2, PhβCA1, PhβCA2, PhβCA3, and PhγCA1. The full-length cDNAs of the six PhCA genes comprised 1156, 1151, 1146, 847, 1124, and 1013 nucleotides, respectively. The encoded proteins were 275, 287, 206, 245, 307, and 290 amino acids, with isoelectric points of 10.26, 5.40, 6.03, 6.42, 7.66, and 4.75, respectively. On the basis of conserved motifs and phylogenetic tree analysis, the PhCAs were divided into three CA classes: PhαCA1 and PhαCA2 are α-CAs; PhβCA1, PhβCA2, and PhβCA3 are β-CAs; and PhγCA1 is a γ-CA. In different CO2 concentrations, the expression levels of PhβCA2, PhβCA3, and PhγCA1 showed no significant changes; however, the expression levels of PhαCA1, PhαCA2, and PhβCA1 decreased significantly under high CO2. The expression level of each PhβCA gene was significantly higher in the sporophytes than in the gametophytes; however, the expression levels of PhαCA and PhγCA in the sporophytes were significantly lower than those in the gametophytes. The expression level of each PhCA under desiccation and high-temperature stress had a different pattern. These results suggested that PhCAs play important roles in the utilization of inorganic carbon of P. haitanensis. Additionally, the expressions of PhCAs were significantly affected by environmental stresses.


Carbonic anhydrase Inorganic carbon utilization Desiccation stress High-temperature stress qPCR 



This research was supported in part by the 863 Project of China (Grant No: 2012AA10A411), the National Natural Science Foundation of China (Grant Nos.: 41176151 and 41276177), and the National Marine Public Welfare Research Project (Grant Nos.: 201105008 and 201105023).


  1. Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190CrossRefGoogle Scholar
  2. Badger M (2003) The roles of carbonic anhydrases in photosynthetic CO2 concentrating mechanisms. Photosynth Res 77:83–94CrossRefPubMedGoogle Scholar
  3. Blouin NA, Brodie JA, Grossman AC, Xu P, Brawley SH (2011) Porphyra: a marine crop shaped by stress. Trends Plant Sci 16:29–37CrossRefPubMedGoogle Scholar
  4. Chen CS, Ji DH, Xie CT, Xu Y, Liang Y, Zhen YJ, Shi XZ, Wang FX, Zhao LM (2008) Preliminary study on selecting the high temperature resistance strains and economic traits of Porphyra haitanensis. Acta Oceanol Sin 30:100–106 (in Chinese with English abstract) Google Scholar
  5. Eriksson M, Karlsson J, Ramazanov Z, Gardestrom P, Samuelsson G (1996) Discovery of an algal mitochondrial carbonic anhydrase: molecular cloning and characterization of a low-CO2-induced polypeptide in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 93:12031–12034CrossRefPubMedPubMedCentralGoogle Scholar
  6. Eriksson M, Villand P, Gardestrom P, Samuelsson G (1998) Induction and regulation of expression of a low-CO2-induced mitochondrial carbonic anhydrase in Chlamydomonas reinhardtii. Plant Physiol 116:637–641CrossRefPubMedPubMedCentralGoogle Scholar
  7. Fabre N, Reiter IM, Becuwe-Linka N, Genty B, Rumeau D (2007) Characterization and expression analysis of genes encoding α and β carbonic anhydrases in Arabidopsis. Plant Cell Environ 30:617–629CrossRefPubMedGoogle Scholar
  8. Fan XL, Fang YJ, Hu SN, Wang GC (2007) Generation and analysis of 5318 expressed sequence tags from the filamentous sporophyte of Porphyra haitanensis (Rhodophyta). J Phycol 43:1287–1294CrossRefGoogle Scholar
  9. Ferry JG (2010) The γ class of carbonic anhydrases. Biochim Biophys Acta 1804:374–381CrossRefPubMedPubMedCentralGoogle Scholar
  10. Karlsson J, Clarke AK, Chen ZY, Hugghins SY, Park YI, Husic HD, Moroney JV, Samuelsson G (1998) A novel a-type carbonic anhydrase associated with the thylakoid membrane in Chlamydomonas reinhardtii is required for growth at ambient CO2. EMBO J 17:1208–1216CrossRefPubMedPubMedCentralGoogle Scholar
  11. Kisker C, Schindelin H, Alber BE, Ferry JG, Rees DC (1996) A left-handed beta-helix revealed by the crystal structure of a carbonic anhydrase from the archaeon Methanosarcina thermophila. EMBO J 15:2323–2330PubMedPubMedCentralGoogle Scholar
  12. Lee RBY, Smith JAC, Rickaby REM (2013) Cloning, expression and characterization of the δ-carbonic anhydrase of Thalassiosira weissflogii (Bacillariophyceae). J Phycol 49:170–177CrossRefGoogle Scholar
  13. Liu YC (2009) Mechanism for differential desiccation tolerance in Porphyra species. PhD Thesis, Northeastern UniversityGoogle Scholar
  14. Luo QJ, Pei LQ, Pan SY (2002) Utilization of inorganic carbon in free-living conchocelis of Porphyra haitanensis. J Fish 26:477–480 (in Chinese with English abstract) Google Scholar
  15. Moroney JV, Husic HD, Tolbert NE (1985) Effect of carbonic anhydrase inhibitors on inorganic carbon accumulation by Chlamydomonas reinhardtii. Plant Physiol 79:177–183CrossRefPubMedPubMedCentralGoogle Scholar
  16. Moroney JV, Bartlett SG, Samuelsson G (2001) Carbonic anhydrases in plants and algae. Plant Cell Environ 24:141–153CrossRefGoogle Scholar
  17. Moroney JV, Ma YB, Frey WD, Fusilier KA, Pham TT, Simms TA, DiMario RJ, Yang J, Mukherjee B (2011) The carbonic anhydrase isoforms of Chlamydomonas reinhardtii: intracellular location, expression, and physiological roles. Photosynth Res 109:133–149CrossRefPubMedGoogle Scholar
  18. Moskvin OV, Ivanov BN, Ignatova LK, Kollmeier MA (2000) Light-induced stimulation of carbonic anhydrase activity in pea thylakoids. FEBS Lett 470:375–377CrossRefPubMedGoogle Scholar
  19. Raven JA (2001) A role for mitochondrial carbonic anhydrase in limiting CO2 leakage from low CO2-grown cells of Chlamydomonas reinhardtii. Plant Cell Environ 24:261–265CrossRefGoogle Scholar
  20. Roberts SB, Lane TW, Morel FMM (1997) Carbonic anhydrase in the marine diatom Thalassiosira weissflogii (Bacillariophyceae). J Phycol 33:845–850CrossRefGoogle Scholar
  21. Sahoo D, Tang XR, Yarish C (2002) Porphyra-the economic seaweed as a new experimental system. Curr Sci 83:1313–1316Google Scholar
  22. So AK, Espie GS (2005) Cyanobacterial carbonic anhydrases. Can J Bot 83:721–734CrossRefGoogle Scholar
  23. So AK, Espie GS, Williams EB, Shively JM, Heinhorst S, Cannon GC (2004) A novel evolutionary lineage of carbonic anhydrase (epsilon class) is a component of the carboxysome shell. J Bacteriol 186:623–630CrossRefPubMedPubMedCentralGoogle Scholar
  24. Soto AR, Zheng H, Shoemaker D, Rodriguez J, Read BA, Wahlund TM (2006) Identification and preliminary characterization of two cDNAs encoding unique carbonic anhydrases from the marine alga Emiliania huxleyi. Appl Environ Microbiol 72:5500–5511CrossRefPubMedPubMedCentralGoogle Scholar
  25. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  26. Tiwari A, Kumar P, Singh S, Ansari SA (2005) Carbonic anhydrase in relation to higher plants. Photosynthetica 43:1–11CrossRefGoogle Scholar
  27. Van K, Spalding MH (1999) Periplasmic carbonic anhydrase structural gene (Cah1) mutant in Chlamydomonas reinhardtii. Plant Physiol 120:757–764CrossRefPubMedPubMedCentralGoogle Scholar
  28. Von Caemmerer S, Quinn V, Hancock NC, Price GD, Furbank RT, Ludwig M (2004) Carbonic anhydrase and C4 photosynthesis: a transgenic analysis. Plant Cell Environ 27:697–703CrossRefGoogle Scholar
  29. Wang SG, Yang R, Zhou XQ, Song DD, Sun X, Luo QJ (2013) Utilization of inorganic in Pyropia haitanensis (Rhodophyta) under heat stress. Oceanology Limnol Sin 44:1378–1385 (in Chinese with English abstract) Google Scholar
  30. Xie C, Li B, Xu Y, Ji D, Chen C (2013) Characterization of the global transcriptome for Pyropia haitanensis (Bangiales, Rhodophyta) and development of cSSR markers. BMC Genomics 14:107CrossRefPubMedPubMedCentralGoogle Scholar
  31. Xu Y, Chen CS, Ji DH, Hang N, Xie CT (2014) Proteomic profile analysis of Pyropia haitanensis in response to high-temperature stress. J Appl Phycol 26:607–618CrossRefGoogle Scholar
  32. Ye RX, Yu Z, Shi WW, Gao HJ, Bi HY, Zhou ZG (2014) Characterization of α-type carbonic anhydrase (CA) gene and subcellular localization of α-CA in the gametophytes of Saccharina japonica. J Appl Phycol 26:881–890CrossRefGoogle Scholar
  33. Yu S, Zhang XX, Guan QJ, Takano T, Liu SK (2007) Expression of a carbonic anhydrase gene is induced by environmental stresses in rice (Oryza sativa L.). Biotechnol Lett 29:89–94CrossRefPubMedGoogle Scholar
  34. Yu Z, Bi YH, Zhou ZG (2011) Cloning and characterization of carbonic anhydrase (CA) gene from Laminaria japonica gametophytes. J Fish China 35:1343–1353 (in Chinese with English abstract) Google Scholar
  35. Zhang BY, Yang F, Wang GC, Peng G (2010) Cloning and quantitative analysis of the carbonic anhydrase gene from Porphyra yezoensis. J Phycol 46:290–296CrossRefGoogle Scholar
  36. Zou DH, Gao KS (2002a) Photosynthetic bicarbonate utilization in Porphyra haitanensis (Bangiales, Rhodophyta). Chin Sci Bull 47:1629–1633Google Scholar
  37. Zou DH, Gao KS (2002b) Effects of desiccation and CO2 concentrations on emersed photosynthesis in Porphyra haitanensis (Bangiales, Rhodophyta), a species farmed in China. Eur J Phycol 37:587–592CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Changsheng Chen
    • 1
  • Zhenzhen Dai
    • 1
  • Yan Xu
    • 1
  • Dehua Ji
    • 1
  • Chaotian Xie
    • 1
    Email author
  1. 1.College of FisheriesJimei UniversityXiamenChina

Personalised recommendations