Advertisement

Journal of Applied Phycology

, Volume 28, Issue 2, pp 1085–1095 | Cite as

Standard flow cytometry as a rapid and non-destructive proxy for cell nitrogen quota

  • Martino E. Malerba
  • Sean R. Connolly
  • Kirsten Heimann
Article

Abstract

The intracellular concentration of internal nitrogen (the “cell nitrogen quota”) is crucial to explain the rate at which phytoplankton populations grow. Hence, understanding changes in cell nitrogen quota is informative on aquatic primary productivity, phytoplankton ecology, eutrophication, and algal blooms. However, current methods to directly monitor per-cell nitrogen quota remain inaccurate, expensive, and time consuming. This study tested the hypothesis that nitrogen limitation triggers systematic optical changes in single cells, which can be rapidly and accurately monitored with a standard flow cytometer. The freshwater microalgae Desmodesmus armatus, Mesotaenium sp., Scenedesmus obliquus, and Tetraëdron sp. were reared in nitrogen-limited batch culture conditions across two treatments of initial population densities and monitored for cell nitrogen quota, medium nitrogen, and optical flow cytometric properties of red fluorescence and forward and side light scatters. Changes in nitrogen quota could be described with high accuracy (R 2 = 0.9) from observations of flow cytometric variables and medium nitrogen, and the relationship did not change across different species or initial population sizes. Red fluorescence was the most important variable explaining 77 % of the total variability in total cell nitrogen and up to 87 % when combined with side light scatter, the second most important variable. Our results indicate that optical flow cytometric variables are a convenient and reliable method to estimate nitrogen quota in microalgal cells.

Keywords

Nitrogen status Optical properties Chlorophyta Fluorescence Nitrogen limitation Flow cytometry 

Notes

Acknowledgments

We are grateful to the North Queensland Algal Identification and Culturing Facility (NQAIF), in particular Stan Hudson and Florian Berner. We also thank A/Prof Bruce Bowden and Prof James Burnell for the assistance in laboratory protocols. Finally, we thank Dr Lyndon Llewellyn, Dr Christian Lonborg, Dr Murray Logan, and Dr Catia Carreira for the helpful advice. This research was supported by AIMS@JCU (aims.jcu.edu.au), the Australian Institute of Marine Science (www.aims.gov.au), the Advanced Manufacturing Cooperative Research Centre (Project 2.3.4), and James Cook University (www.jcu.edu.au). We also thank the reviewers, whose comments and suggestions helped improve the manuscript.

References

  1. Adams C, Godfrey V, Wahlen B, Seefeldt L, Bugbee B (2013) Understanding precision nitrogen stress to optimize the growth and lipid content tradeoff in oleaginous green microalgae. Bioresour Technol 131:188–194CrossRefPubMedGoogle Scholar
  2. Balfoort HW, Berman T, Maestrini SY, Wenzel A, Zohary T (1992) Flow-cytometry—instrumentation and application in phytoplankton research. Hydrobiologia 238:89–97CrossRefGoogle Scholar
  3. Barton K (2014) R Package “MuMIn”: Model selection and model averaging based on information criteria (AICc and alike)Google Scholar
  4. Beardall J, Young E, Roberts S (2001) Approaches for determining phytoplankton nutrient limitation. Aquat Sci 63:44–69CrossRefGoogle Scholar
  5. Bertilsson S, Berglund O, Karl DM, Chisholm SW (2003) Elemental composition of marine Prochlorococcus and Synechococcus: implications for the ecological stoichiometry of the sea. Limnol Oceanogr 48:1721–1731CrossRefGoogle Scholar
  6. Bordi F, Neeck S, Scolese C (1999) Contribution of EOS Terra to Earth science. In: Fujisada H, Lurie JB (eds) Sensors, systems, and next-generation satellites, vol 3870, Proceedings of the Society of Photo-Optical Instrumentation Engineers (Spie). Spie-Int Soc Optical Engineering, Bellingham, pp 260–268Google Scholar
  7. Brookes JD, Geary SM, Ganf GG, Burch MD (2000) Use of FDA and flow cytometry to assess metabolic activity as an indicator of nutrient status in phytoplankton. J Mar Freshw Res 51:817–823CrossRefGoogle Scholar
  8. Cataldo DA, Haroon M, Schrader LE, Youngs VL (1975) Rapid colorimetric determination of nitrate in plant-tissue by nitration of salicylic-acid. Commun Soil Sci Plant Anal 6:71–80CrossRefGoogle Scholar
  9. Cavender-Bares KK, Mann EL, Chisholm SW, Ondrusek ME, Bidigare RR (1999) Differential response of equatorial Pacific phytoplankton to iron fertilization. Limnol Oceanogr 44:237–246CrossRefGoogle Scholar
  10. Chevan A, Sutherland M (1991) Hierarchical partitioning. Am Stat 45:90–96Google Scholar
  11. Clescerl LS, Greenberg AE, Eaton AD (1999) 4500 NO3 Nitrogen (Nitrate). In: APHA, AWWA, WPCF (eds) Standard Methods For Examination of Water and Wastewater. 20th edn. Amer Public Health AssnGoogle Scholar
  12. Cleveland JS, Perry MJ (1987) Quantum yield, relative specific absorption and fluorescence in nitrogen-limited Chaetoceros gracilis. Mar Biol 94:489–497CrossRefGoogle Scholar
  13. Cloern JE (2001) Our evolving conceptual model of the coastal eutrophication problem. Mar Ecol Prog Ser 210:223–253CrossRefGoogle Scholar
  14. Collier JL (2000) Flow cytometry and the single cell in phycology. J Phycol 36:628–644CrossRefGoogle Scholar
  15. R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/
  16. da Silva TL, Roseiro JC, Reis A (2012) Applications and perspectives of multi-parameter flow cytometry to microbial biofuels production processes. Trends Biotechnol 30:225–232CrossRefPubMedGoogle Scholar
  17. Davey M, Tarran GA, Mills MM, Ridame C, Geider RJ, LaRoche J (2008) Nutrient limitation of picophytoplankton photosynthesis and growth in the tropical North Atlantic. Limnol Oceanogr 53:1722–1733CrossRefGoogle Scholar
  18. de la Jara A, Mendoza H, Martel A, Molina C, Nordströn L, de la Rosa V, Díaz R (2003) Flow cytometric determination of lipid content in a marine dinoflagellate, Crypthecodinium cohnii. J Appl Phycol 15:433–438CrossRefGoogle Scholar
  19. Delia CF, Steudler PA, Corwin N (1977) Determination of total nitrogen in aqueous samples using persulfate digestion. Limnol Oceanogr 22:760–764CrossRefGoogle Scholar
  20. Demers S, Davis K, Cucci TL (1989) A flow cytometric approach to assessing the environmental and physiological status of phytoplankton. Cytometry 10:644–652CrossRefPubMedGoogle Scholar
  21. Doan TTY, Obbard JP (2011) Enhanced lipid production in Nannochloropsis sp. using fluorescence-activated cell sorting. Glob Change Biol Bioenergy 3:264–270CrossRefGoogle Scholar
  22. Dodds WK, Strauss EA, Lehmann R (1993) Nutrient dilution and removal bioassays to estimate phytoplankton response to nutrient control. Arch Hydrobiol 128:467–481Google Scholar
  23. Dortch Q, Clayton JR, Thoresen SS, Ahmed SI (1984) Species-differences in accumulation of nitrogen pools in phytoplankton. Mar Biol 81:237–250CrossRefGoogle Scholar
  24. Dubelaar GBJ, Jonker RR (2000) Flow cytometry as a tool for the study of phytoplankton. Sci Mar 64:135–156CrossRefGoogle Scholar
  25. DuRand MD, Olson RJ (1996) Contributions of phytoplankton light scattering and cell concentration changes to diel variations in beam attenuation in the equatorial Pacific from flow cytometric measurements of pico-, ultra- and nanoplankton. Deep-Sea Res II 43:891–906CrossRefGoogle Scholar
  26. DuRand MD, Olson RJ (1998) Diel patterns in optical properties of the chlorophyte Nannochloris sp.: relating individual-cell to bulk measurements. Limnol Oceanogr 43:1107–1118CrossRefGoogle Scholar
  27. DuRand MD, Green RE, Sosik HM, Olson RJ (2002) Diel variations in optical properties of Micromonas pusilla (Prasinophyceae). J Phycol 38:1132–1142CrossRefGoogle Scholar
  28. Dusenberry JA, Olson RJ, Chisholm SW (1999) Frequency distributions of phytoplankton single-cell fluorescence and vertical mixing in the surface ocean. Limnol Oceanogr 44:431–436CrossRefGoogle Scholar
  29. Eaton A, Clesceri L, Rice E, Greenberg A (2005) Protocol 4500-N C. Persulfate Method. In: APHA, AWWA, WPCF (eds) Standard Methods for the examination of water and wastewater. 21 edn. Amer Public Health AssnGoogle Scholar
  30. Gouveia L, Marques AE, da Silva TL, Reis A (2009) Neochloris oleabundans UTEX #1185: a suitable renewable lipid source for biofuel production. J Ind Microbiol Biotechnol 36:821–826CrossRefPubMedGoogle Scholar
  31. Graziano LM, Geider RJ, Li WKW, Olaizola M (1996) Nitrogen limitation of North Atlantic phytoplankton: analysis of physiological condition in nutrient enrichment experiments. Aquat Microb Ecol 11:53–64CrossRefGoogle Scholar
  32. Gromping U (2006) Relative importance for linear regression in R: the package relaimpo. J Stat Softw 17(1)Google Scholar
  33. Gromping U (2007) Estimators of relative importance in linear regression based on variance decomposition. Am Stat 61:139–147CrossRefGoogle Scholar
  34. Grover JP (1991) Resource competition in a variable environment—phytoplankton growing according to the variable-internal-stores model. Am Nat 138:811–835CrossRefGoogle Scholar
  35. Hayes PK, Whitaker TM, Fogg GE (1984) The distribution and nutrient status of phytoplankton in the Southern Ocean between 20° and 70° W. Polar Biol 3:153–165CrossRefGoogle Scholar
  36. Hecky R, Kilham P (1988) Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment. Limnol Oceanogr 33:796–822CrossRefGoogle Scholar
  37. Holt RD (2008) Theoretical perspectives on resource pulses. Ecology 89:671–681CrossRefPubMedGoogle Scholar
  38. Howarth RW (1988) Nutrient limitation of net primary production in marine ecosystems. Annu Rev Ecol Syst 19:89–110CrossRefGoogle Scholar
  39. Hyka P, Lickova S, Pribyl P, Melzoch K, Kovar K (2013) Flow cytometry for the development of biotechnological processes with microalgae. Biotechnol Adv 31:2–16CrossRefPubMedGoogle Scholar
  40. Ikaran Z, Suárez-Alvarez S, Urreta I, Castañón S (2015) The effect of nitrogen limitation on the physiology and metabolism of Chlorella vulgaris var L3. Algal Res 10:134–144CrossRefGoogle Scholar
  41. Jacquet S, Lennon JF, Marie D, Vaulot D (1998) Picoplankton population dynamics in coastal waters of the northwestern Mediterranean Sea. Limnol Oceanogr 43:1916–1931Google Scholar
  42. Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90:773–795CrossRefGoogle Scholar
  43. Kolber Z, Zehr J, Falkowski P (1988) Effects of growth irradiance and nitrogen limitation on photosynthetic energy conversion in Photosystem II. Plant Physiol 88:923–929CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lanoul A, Coleman T, Asher SA (2002) UV resonance raman spectroscopic detection of nitrate and nitrite in wastewater treatment processes. Anal Chem 74:1458–1461CrossRefPubMedGoogle Scholar
  45. Li G, Brown CM, Jeans JA, Donaher NA, McCarthy A, Campbell DA (2014) The nitrogen costs of photosynthesis in a diatom under current and future pCO. New Phytol 205:533–543CrossRefPubMedGoogle Scholar
  46. Liu SW, Qiu BS (2012) Different responses of photosynthesis and flow cytometric signals to iron limitation and nitrogen source in coastal and oceanic Synechococcus strains (Cyanophyceae). Mar Biol 159:519–532CrossRefGoogle Scholar
  47. Luning K (2005) Endogenous rhythms and daylength effects in macroalgal development. In: Andersen RA (ed) Algal culturing techniques. Elsevier/Academic Press, Burlington, pp 347–364Google Scholar
  48. Malerba ME, Connolly SR, Heimann K (2012) Nitrate-nitrite dynamics and phytoplankton growth: formulation and experimental evaluation of a dynamic model. Limnol Oceanogr 57:1555–1571CrossRefGoogle Scholar
  49. Mas S, Roy S, Blouin F, Mostajir B, Therriault JC, Nozais C, Demers S (2008) Diel variations in optical properties of Imantonia rotunda (Haptophyceae) and Thalassiosira pseudonana (Bacillariophyceae) exposed to different irradiance levels. J Phycol 44:551–563CrossRefGoogle Scholar
  50. Mulholland MR, Lomas MW (2008) Nitrogen uptake and assimilation. In: Capone DG, Bronk DA, Mulholland MR, Carpenter EJ (eds) Nitrogen in Marine Environment, 2nd edn. Elsevier, Amsterdam, pp 303–384CrossRefGoogle Scholar
  51. Nichols HW (1973) Growth media - freshwater. In: Stein J (ed) Handbook of phycological methods. Cambridge University Press, Cambridge, pp 7–24Google Scholar
  52. Olson RJ, Shalapyonok A, Sosik HM (2003) An automated submersible flow cytometer for analyzing pico- and nanophytoplankton: FlowCytobot. Deep-Sea Res I 50:301–315CrossRefGoogle Scholar
  53. Raimbault P, Diaz F, Pouvesle W, Boudjellal B (1999) Simultaneous determination of particulate organic carbon, nitrogen and phosphorus collected on filters, using a semi-automatic wet-oxidation method. Mar Ecol Prog Ser 180:289–295CrossRefGoogle Scholar
  54. Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112CrossRefPubMedGoogle Scholar
  55. Roenneberg T, Mittag M (1996) The circadian program of algae. Semin Cell Dev Biol 7:753–763CrossRefGoogle Scholar
  56. RStudio (2013) version 0.98.507, Boston (MA), url http://www.rstudio.org/
  57. Schwarz GE (1978) Estimating the dimension of a model. Ann Stat 6:461–464CrossRefGoogle Scholar
  58. Shelly K, Holland D, Beardall J (2010) Assessing nutrient status of microalgae using chlorophyll a fluorescence. In: Suggett DJ, Borowitzka M, Prášil O (eds) Chlorophyll a fluorescence in aquatic sciences methods and applications. Springer, Dordrecht, pp 223–236CrossRefGoogle Scholar
  59. Solorzano L, Sharp JH (1980) Determination of total dissolved nitrogen in natural-waters. Limnol Oceanogr 25:751–754CrossRefGoogle Scholar
  60. Sosik HM, Chisholm SW, Olson RJ (1989) Chlorophyll fluorescence from single cells—interpretation of flow cytometric signals. Limnol Oceanogr 34:1749–1761CrossRefGoogle Scholar
  61. Sosik HM, Olson RJ, Armbrust EV (2010) Flow cytometry in phytoplankton research. In: Suggett DJ, Borowitzka M, Prášil O (eds) Chlorophyll a fluorescence in aquatic sciences methods and applications. Springer, Dordrecht, pp 171–186CrossRefGoogle Scholar
  62. Strong DR, Whipple AV, Child AL, Dennis B (1999) Model selection for a subterranean trophic cascade: root-feeding caterpillars and entomopathogenic nematodes. Ecology 80:2750–2761CrossRefGoogle Scholar
  63. Thyssen M, Gregori GJ, Grisoni JM, Pedrotti ML, Mousseau L, Artigas LF, Marro S, Garcia N, Passafiume O, Denis MJ (2014) Onset of the spring bloom in the northwestern Mediterranean Sea: influence of environmental pulse events on the in situ hourly-scale dynamics of the phytoplankton community structure. Front Microbiol 5:387. doi: 10.3389/fmicb.2014.00387 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Timmermans KR, Davey MS, Bvd W, Snoek J, Geider RJ, Veldhuis MJW, Gerringa LJA, Baar HJW (2001) Co-limitation by iron and light of Chaetoceros brevis, C. dichaeta and C. calcitrans (Bacillariophyceae). Mar Ecol Prog Ser 217:287–297CrossRefGoogle Scholar
  65. Turpin DH (1991) Effects of inorganic N availability on algal photosynthesis and carbon metabolism. J Phycol 27:14–20CrossRefGoogle Scholar
  66. Vanucci S, Guerrini F, Milandri A, Pistocchi R (2010) Effects of different levels of N- and P-deficiency on cell yield, okadaic acid, DTX-1, protein and carbohydrate dynamics in the benthic dinoflagellate Prorocentrum lima. Harmful Algae 9:590–599CrossRefGoogle Scholar
  67. Veldhuis MJW, Kraay GW (2000) Application of flow cytometry in marine phytoplankton research: current applications and future perspectives. Sci Mar 64:121–134CrossRefGoogle Scholar
  68. von Dassow P, van den Engh G, Iglesias-Rodriguez D, Gittins JR (2012) Calcification state of coccolithophores can be assessed by light scatter depolarization measurements with flow cytometry. J Plankton Res 34:1011–1027CrossRefGoogle Scholar
  69. Yentsch CM, Horan PK, Muirhead K, Dortch Q, Haugen E, Legendre L, Murphy LS, Perry MJ, Phinney DA, Pomponi SA, Spinrad RW, Wood M, Yentsch CS, Zahuranec BJ (1983) Flow-cytometry and cell sorting—a technique for analysis and sorting of aquatic particles. Limnol Oceanogr 28:1275–1280CrossRefGoogle Scholar
  70. Zettler ER, Olson RJ, Binder BJ, Chisholm SW, Fitzwater SE, Gordon RM (1996) Iron-enrichment bottle experiments in the equatorial Pacific: responses of individual phytoplankton cells. Deep Sea Res II 43:1017–1029CrossRefGoogle Scholar
  71. Zhou Q, Chen W, Zhang H, Peng L, Liu L, Han Z, Wan N, Li L, Song L (2012) A flow cytometer based protocol for quantitative analysis of bloom-forming cyanobacteria (Microcystis) in lake sediments. J Environ Sci (China) 24(9):1709–1716CrossRefGoogle Scholar
  72. Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Martino E. Malerba
    • 1
    • 2
    • 3
    • 4
  • Sean R. Connolly
    • 3
    • 5
  • Kirsten Heimann
    • 3
    • 4
  1. 1.AIMS@JCUJames Cook UniversityTownsvilleAustralia
  2. 2.Australian Institute of Marine Science (AIMS)TownsvilleAustralia
  3. 3.College of Marine and Environmental SciencesJames Cook UniversityTownsvilleAustralia
  4. 4.Centre for Sustainable Tropical Fisheries and AquacultureJames Cook UniversityTownsvilleAustralia
  5. 5.Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleAustralia

Personalised recommendations