Journal of Applied Phycology

, Volume 28, Issue 1, pp 191–199 | Cite as

Stable nuclear transformation of the oleaginous microalga Neochloris oleoabundans by electroporation

  • Wipa Chungjatupornchai
  • Paweena Kitraksa
  • Sirirat Fa-aroonsawat


Biodiesel from microalgae is technically feasible, but not yet economically viable. A potential approach to improve microalgae as an economically viable biodiesel feedstock is to increase microalgal lipid content via genetic engineering. Genetic manipulation of microalgae requires the accessibility to stable nuclear transformation. In this study, we describe a strategy for developing a stable nuclear transformation system of the oleaginous microalga Neochloris oleoabundans using electroporation. The hygromycin B-resistant gene Hyg3, which was used as a positively selectable marker, consisted of aph7” gene encoding aminoglycoside phosphotransferase of Streptomyces hygroscopicus and intron1 of Chlamydomonas reinhardtii rbcS2 gene, under the control of C. reinhardtii HSP70A-RBCS2 hybrid promoter. The transformation frequency was 5.2 × 10−4 transformants mg−1 DNA. The transformants showed stable hygromycin B-resistant phenotype for at least 6 months in the absence of the antibiotic selection. Co-transformation frequency of unselectable green fluorescent protein gene (Gfp) adapted to C. reinhardtii codon usage (ChGfp) and selectable Hyg3 gene was 2.6 × 10−4 transformants mg−1 DNA; up to 90 % of the transformants exhibited green fluorescent protein (GFP) activity. The ChGfp and Hyg3 gene were integrated into the nuclear genome of N. oleoabundans. The GFP fluorescence signal of the transformants under confocal laser scanning microscope was visible. The successful stable nuclear transformation system not only provides a basis for molecular genetics study, but also enables subsequent genetic engineering in the microalga to increase lipid content for biodiesel production. The strategy for developing the stable nuclear transformation system presented in this study may be applicable to other microalgal species without sequenced genome.


Microalgae Neochloris oleoabundans Ettlia oleoabundans Nuclear transformation Electroporation Green fluorescent protein (GFP) Biodiesel 

Supplementary material

10811_2015_594_MOESM1_ESM.pdf (221 kb)
ESM 1(PDF 220 kb)


  1. Berthold P, Schmitt R, Mages W (2002) An engineered Streptomyces hygroscopicus aph 7″ gene mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii. Protist 153:401–412CrossRefPubMedGoogle Scholar
  2. Bischoff HW, Bold HC (1963) Phycological studies. IV. Some algae from enchanted rock and related algae species. Univ Texas Pub 4:1–95Google Scholar
  3. Brown LE, Sprecher S, Keller L (1991) Introduction of exogenous DNA into Chlamydomonas reinhardtii by electroporation. Mol Cell Biol 11:2328–2332CrossRefPubMedPubMedCentralGoogle Scholar
  4. Brunke K, Anthony J, Sternberg E, Weeks D (1984) Repeated consensus sequence and pseudopromoters in the four coordinately regulated tubulin genes of Chlamydomonas reinhardtii. Mol Cell Biol 4:1115–1124CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306CrossRefPubMedGoogle Scholar
  6. Chow K-C, Tung W (1999) Electrotransformation of Chlorella vulgaris. Plant Cell Rep 18:778–780CrossRefGoogle Scholar
  7. Chungjatupornchai W, Watcharawipas A (2014) Diacylglycerol acyltransferase type 2 cDNA from the oleaginous microalga Neochloris oleoabundans: cloning and functional characterization. J Appl Phycol. doi:10.1007/s10811-014-0448-6 Google Scholar
  8. Chungjatupornchai W, Senawong T, Panyim S (1999) Isolation and characterization of Synechococcus PCC7942 promoters: tRNApro gene functions as a promoter. Curr Microbiol 38:210–216CrossRefPubMedGoogle Scholar
  9. Coll J (2006) Methodologies for transferring DNA into eukaryotic microalgae: a review. Span J Agric Res 4:316–330CrossRefGoogle Scholar
  10. Deason T, Silva P, Watanabe S, Floyd G (1991) Taxonomic status of the species of the green algal genus Neochloris. Plant Syst Evol 177:213–219CrossRefGoogle Scholar
  11. Draper J, Scott R (1998) The isolation of plant nucleic acids. In: Draper J, Scott R, Armitage P, Walden R (eds) Plant genetic transformation and gene expression: a laboratory manual. Blackwell Scientific Publications, London, pp 199–236Google Scholar
  12. Fuhrmann M, Oertel W, Hegemann P (1999) A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii. Plant J 19:353–361CrossRefPubMedGoogle Scholar
  13. Gurskaya N, Fradkov A, Pounkova N, Staroverov D, Bulina M, Yanushevich Y, Labas Y, Lukyanov S, Lukyanov K (2003) A colourless green fluorescent protein homologue from the non-fluorescent hydromedusa Aequorea coerulescens and its fluorescent mutants. Biochem J 373:403–408CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hallmann A, Wodniok S (2006) Swapped green algal promoters: aphVIII-based gene constructs with Chlamydomonas flanking sequences work as dominant selectable markers in Volvox and vice versa. Plant Cell Rep 25:582–591CrossRefPubMedGoogle Scholar
  15. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker. EMBO J 6:3901–3908PubMedPubMedCentralGoogle Scholar
  16. Kleinegris DM, van Es MA, Janssen M, Brandenburg WA, Wijffels RH (2010) Carotenoid fluorescence in Dunaliella salina. J Appl Phycol 22:645–649CrossRefPubMedPubMedCentralGoogle Scholar
  17. Lerche K, Hallmann A (2009) Stable nuclear transformation of Gonium pectorale. BMC Biotechnol 9:64CrossRefPubMedPubMedCentralGoogle Scholar
  18. Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J 14:441–447CrossRefGoogle Scholar
  19. Odell JT, Nagy F, Chua N-H (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812CrossRefPubMedGoogle Scholar
  20. Qin S, Lin H, Jiang P (2012) Advances in genetic engineering of marine algae. Biotechnol Adv 30:1602–1613CrossRefPubMedGoogle Scholar
  21. Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9:486–501CrossRefPubMedPubMedCentralGoogle Scholar
  22. Reed R, Hurt E (2002) A conserved mRNA export machinery coupled to pre-mRNA splicing. Cell 108:523–531CrossRefPubMedGoogle Scholar
  23. Rose AB, Last RL (1997) Introns act post‐transcriptionally to increase expression of the Arabidopsis thaliana tryptophan pathway gene PAT1. Plant J 11:455–464CrossRefPubMedGoogle Scholar
  24. Schroda M (2006) RNA silencing in Chlamydomonas: mechanisms and tools. Curr Genet 49:69–84CrossRefPubMedGoogle Scholar
  25. Schroda M, Blöcker D, Beck CF (2000) The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. Plant J 21:121–131CrossRefPubMedGoogle Scholar
  26. Shimogawara K, Fujiwara S, Grossman A, Usuda H (1998) High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics 148(4):1821–1828PubMedPubMedCentralGoogle Scholar
  27. Tan C, Qin S, Zhang Q, Jiang P, Zhao F (2005) Establishment of a micro-particle bombardment transformation system for Dunaliella salina. J Microbiol 43:361PubMedGoogle Scholar
  28. Tornabene T, Holzer G, Lien S, Burris N (1983) Lipid composition of the nitrogen starved green alga Neochloris oleoabundans. Enzyme Microb Technol 5:435–440CrossRefGoogle Scholar
  29. Zhang C, Hu H (2014) High-efficiency nuclear transformation of the diatom Phaeodactylum tricornutum by electroporation. Mar Genomics 16:63–66CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Wipa Chungjatupornchai
    • 1
  • Paweena Kitraksa
    • 1
  • Sirirat Fa-aroonsawat
    • 1
  1. 1.Institute of Molecular BiosciencesMahidol University, Salaya CampusNakhon PathomThailand

Personalised recommendations