Journal of Applied Phycology

, Volume 28, Issue 1, pp 679–689 | Cite as

Dietary inclusion of IMTA-cultivated Gracilaria vermiculophylla in rainbow trout (Oncorhynchus mykiss) diets: effects on growth, intestinal morphology, tissue pigmentation, and immunological response

  • Mariana Araújo
  • Paulo Rema
  • Isabel Sousa-Pinto
  • Luís M. Cunha
  • Maria João Peixoto
  • Maria A. Pires
  • Fernanda Seixas
  • Vanda Brotas
  • Carolina Beltrán
  • Luísa M. P. Valente


Dietary inclusion of IMTA-cultivated Gracilaria vermiculophylla was evaluated in rainbow trout. Growth and feed efficiency were determined in fish fed 0 % (CTRL), 5 % (G5), and 10 % (G10) of the red seaweed for 91 days. Carotenoid concentration (skin and muscle), immunological parameters, and intestinal morphology were also evaluated. G10 group showed the lowest final body weight, with feed and protein efficiency ratios being significantly lower than the CTRL. Although protein intake was similar among groups, G10 diet induced the lowest protein retention and gain probably due to its smallest intestine diameter and lowest villi height. Fish fed G10 diet displayed higher carotenoid content in the skin (16.7 μg g−1) when compared with the CTRL group, but a lower concentration was registered in the flesh (0.23 μg g−1). Instrumental color showed that fillets were more luminous (L*), less yellowish (b*), and more reddish (a*) with seaweed inclusion and the lowest chrome intensity (C*) in the G10 group confirmed the lowest muscle carotenoid content in these fish. G5 diet enhanced the innate immune response of rainbow trout inducing the highest peroxidase, alternative complement (ACH50), and lysozyme activities. The inclusion of Gracilaria meal in diets for rainbow trout is possible up to 5 %, but a higher inclusion level impairs growth.


Innate Immunology Nutrient retention Carotenoids Seaweeds Rhodophyta 



This work was funded by FEDER, under the framework of QREN through Project NORTE-07-0124-FEDER-000069 and in the context of the Operational Competitiveness Programme – COMPETE, by FCT, under the project Benefits (PTDC/MAR/105229/2008) n. FCOMP-01-0124-FEDER-010622, and also by PEst-OE/MAR/UI0199/2014.


  1. Abreu MH, Pereira R, Yarish C, Buschmann AH, Sousa-Pinto I (2011) IMTA with Gracilaria vermiculophylla: productivity and nutrient removal performance of the seaweed in a land-based pilot scale system. Aquaculture 312:77–87CrossRefGoogle Scholar
  2. Amar EC, Kiron V, Satoh S, Watanabe T (2004) Enhancement of innate immunity in rainbow trout (Oncorhynchus mykiss Walbaum) associated with dietary intake of carotenoids from natural products. Fish Shellfish Immunol 16:527–537CrossRefPubMedGoogle Scholar
  3. Antony Jesu Prabhu P, Schrama JW, Mariojouls C, Godin S, Fontagné-Dicharry S, Geurden I, Surget A, Bouyssiere B, Kaushik SJ (2014) Post-prandial changes in plasma mineral levels in rainbow trout fed a complete plant ingredient based diet and the effect of supplemental di-calcium phosphate. Aquaculture 430:34–43CrossRefGoogle Scholar
  4. Association of Official Analytical Chemists (AOAC) (2006) Official methods of analysis, 18th edn. Washington, DC, USAGoogle Scholar
  5. Barbosa MJ, Morais R, Choubert G (1999) Effect of carotenoid source and dietary lipid content on blood astaxanthin concentration in rainbow trout (Oncorhynchus mykiss). Aquaculture 176:331–341CrossRefGoogle Scholar
  6. Briggs MRP, Funge-Smith SJ (1996) The potential use of Gracilaria sp. meal in diets for juvenile Penaeus monodon Fabricius. Aquacult Res 27:345–354CrossRefGoogle Scholar
  7. Brotas V, Mendes C, Cartaxana P (2007) Microphytobenthic biomass assessment by pigment analysis: comparison of spectrophotometry and high performance liquid chromatography methods. Hydrobiologia 587:19–24CrossRefGoogle Scholar
  8. Brotas V, Plante-Cuny MR (2003) The use of HPLC pigment analysis to study microphytobenthos communities. Acta Oecol 24:S109–S115CrossRefGoogle Scholar
  9. Carnicas E, Jiménez C, Niell FX (1999) Effects of changes of irradiance on the pigment composition of Gracilaria tenuistipitata var. liui Zhang et Xia. J Photochem Photobiol B 50:149–158CrossRefGoogle Scholar
  10. Castro R, Zarra I, Lamas J (2004) Water-soluble seaweed extracts modulate the respiratory burst activity of turbot phagocytes. Aquaculture 229:67–78CrossRefGoogle Scholar
  11. Choubert G, Blanc JM, Courvalin C (1992) Muscle carotenoid content and colour of farmed rainbow trout fed astaxanthin or canthaxanthin as affected by cooking and smoke-curing procedures. Int J Food Sci Tech 27:277–284CrossRefGoogle Scholar
  12. Choubert G, Blanc JM, Vallée F (1997) Colour measurement, using the CIELCH colour space, of muscle of rainbow trout, Oncorhynchus mykiss (Walbaum), fed astaxanthin: effects of family, ploidy, sex, and location of reading. Aquacult Res 28:15–22CrossRefGoogle Scholar
  13. Choubert G, Milicua JC, Gomez R, Sancé S, Petit H, Nègre-Sadargues G, Castillo R, Trilles JP (1995) Utilization of carotenoids from various sources by rainbow trout: muscle colour, carotenoid digestibility and retention. Aquacult Int 3:205–216CrossRefGoogle Scholar
  14. Choubert G, Storebakken T (1989) Dose response to astaxanthin and canthaxanthin pigmentation of rainbow trout fed various dietary carotenoid concentrations. Aquaculture 81:69–77CrossRefGoogle Scholar
  15. Christiansen R, Struksnæs G, Estermann R, Torrissen OJ (1995) Assessment of flesh colour in Atlantic salmon, Salmo salar L. Aquacult Res 26:311–321CrossRefGoogle Scholar
  16. Colihueque N (2010) Genetics of salmonid skin pigmentation: clues and prospects for improving the external appearance of farmed salmonids. Rev Fish Biol Fish 20:71–86CrossRefGoogle Scholar
  17. Costa JC, Gonçalves PR, Nobre A, Alves MM (2012) Biomethanation potential of macroalgae Ulva spp. and Gracilaria spp. and in co-digestion with waste activated sludge. Bioresour Technol 114:320–326CrossRefPubMedGoogle Scholar
  18. Costas B, Conceicão LE, Dias J, Novoa B, Figueras A, Afonso A (2011) Dietary arginine and repeated handling increase disease resistance and modulate innate immune mechanisms of Senegalese sole (Solea senegalensis Kaup, 1858). Fish Shellfish Immunol 31:838–847CrossRefPubMedGoogle Scholar
  19. Dalmo RA, Seljelid R (1995) The immunomodulatory effect of LPS, laminaran and sulphated laminaran [β(l,3)-d-glucan] on Atlantic salmon, Salmo salar L., macrophages in vitro. J Fish Dis 18:175–185CrossRefGoogle Scholar
  20. Dantagnan P, Hernández A, Borquez A, Mansilla A (2009) Inclusion of macroalgae meal (Macrocystis pyrifera) as feed ingredient for rainbow trout (Oncorhynchus mykiss): effect on flesh fatty acid composition. Aquacult Res 41:87–94CrossRefGoogle Scholar
  21. Díaz-Rosales P, Burmeister A, Aguilera J, Korbee N, Moriñigo MA, Figueroa FL, Chabrillón M, Arijo S, Lindequist U, Balebona MC (2005) Screening of algal extracts as potential stimulants of chemotaxis and respiratory burst activity of phagocytes from sole (Solea senegalensis). Bull Eur Assoc Fish Pathol 25:9–19Google Scholar
  22. Fujiki K, Yano T (1997) Effects of sodium alginate on the non-specific defence system of the common carp (Cyprinus carpio L.). Fish Shellfish Immunol 7:417–427CrossRefGoogle Scholar
  23. Gabrielsen BO, Austreng E (1998) Growth, product quality and immune status of Atlantic salmon, Salmo salar L., fed wet feed with alginate. Aquacult Res 29:397–401CrossRefGoogle Scholar
  24. Gressler V, Yokoya NS, Fujii MT, Colepicolo P, Filho JM, Torres RP, Pinto E (2010) Lipid, fatty acid, protein, amino acid and ash contents in four Brazilian red algae species. Food Chem 120:585–590CrossRefGoogle Scholar
  25. Hashim R, Saat MAM (1992) The utilization of seaweed meals as binding agents in pelleted feeds for snakehead (Channa striatus) fry and their effects on growth. Aquaculture 108:299–308CrossRefGoogle Scholar
  26. Heidarieh M, Mirvaghefi A, Akbari M, Farahmand H, Sheikhzadeh N, Shahbazfar A, Behgar M (2012) Effect of dietary Ergosan on growth performance, digestive enzymes, intestinal histology, hematological parameters and body composition of rainbow trout (Oncorhynchus mykiss). Fish Physiol Biochem 38:1169–1174CrossRefPubMedGoogle Scholar
  27. Holdt SL, Kraan S (2011) Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 23:543–597CrossRefGoogle Scholar
  28. Klurfeld DM (1999) Nutritional regulation of gastrointestinal growth. Front Biosci 4:299–302CrossRefGoogle Scholar
  29. Kumar V, Kumar S, Pandey PK, Raman RP, Prasad KP, Roy S, Kumar A, Kumar K (2014) Growth and haemato-immunological response to dietary ι-carrageenan in Labeo rohita (Hamilton, 1822) juveniles. Isr J Aquacult-Bamid 66:1–10Google Scholar
  30. Liao WR, Lin JY, Shieh WY, Jeng WL, Huang R (2003) Antibiotic activity of lectins from marine algae against marine vibrios. J Ind Microbiol Biotechnol 30:433–439CrossRefPubMedGoogle Scholar
  31. Lie O, Syed M, Solbu H (1986) Improved agar plate assays of bovine lysozyme and haemolytic complement activity. Acta Vet Scand 27:23–32PubMedGoogle Scholar
  32. Marinho-Soriano E, Camara MR, Cabral TM, Carneiro MAA (2007) Preliminary evaluation of the seaweed Gracilaria cervicornis (Rhodophyta) as a partial substitute for the industrial feeds used in shrimp (Litopenaeus vannamei) farming. Aquacult Res 38:182–187Google Scholar
  33. Merrifield D, Harper G, Mustafa S, Carnevali O, Picchietti S, Davies S (2011) Effect of dietary alginic acid on juvenile tilapia (Oreochromis niloticus) intestinal microbial balance, intestinal histology and growth performance. Cell Tissue Res 344:135–146CrossRefPubMedGoogle Scholar
  34. Mora GI, Arredondo-Figueroa JL, Ponce-Palafox JT, Barriga-Soca IA, Vernon-Carter JE (2006) Comparison of red chilli (Capsicum annuum) oleoresin and astaxanthin on rainbow trout (Oncorhynchus mykiss) fillet pigmentation. Aquaculture 258:487–495CrossRefGoogle Scholar
  35. Mustafa MG, Nakagawa H (1995) A review: dietary benefits of algae as an additive in fish feed. Isr J Aquacult-Bamid 47:155–162Google Scholar
  36. Nakagawa H, Umino T, Tasaka Y (1997) Usefulness of Ascophyllum meal as a feed additive for red sea bream, Pagrus major. Aquaculture 151:275–281CrossRefGoogle Scholar
  37. Nayak SK (2010) Probiotics and immunity: a fish perspective. Fish Shellfish Immunol 29:2–14CrossRefPubMedGoogle Scholar
  38. NRC (2011) Nutrient requirements of fish and shrimp. National Academic Press, Washington, D.C., 376 ppGoogle Scholar
  39. Ortiz J, Uquiche E, Robert P, Romero N, Quitral V, Llantén C (2009) Functional and nutritional value of the Chilean seaweeds Codium fragile, Gracilaria chilensis and Macrocystis pyrifera. Eur J Lipid Sci Technol 111:320–327CrossRefGoogle Scholar
  40. Peddie S, Zou J, Secombes CJ (2002) Immunostimulation in the rainbow trout (Oncorhynchus mykiss) following intraperitoneal administration of Ergosan. Vet Immunol Immunopathol 86:101–113CrossRefPubMedGoogle Scholar
  41. Peñaflorida VD, Golez NV (1996) Use of seaweed meals from Kappaphycus alvarezii and Gracilaria heteroclada as binders in diets for juvenile shrimp Penaeus monodon. Aquaculture 143:393–401CrossRefGoogle Scholar
  42. Pereira R, Valente LMP, Sousa-Pinto I, Rema P (2012) Apparent nutrient digestibility of seaweeds by rainbow trout (Oncorhynchus mykiss) and Nile tilapia (Oreochromis niloticus). Algal Res 1:77–82CrossRefGoogle Scholar
  43. Pirarat N, Pinpimai K, Endo M, Katagiri T, Ponpornpisit A, Chansue N, Maita M (2011) Modulation of intestinal morphology and immunity in Nile tilapia (Oreochromis niloticus) by Lactobacillus rhamnosus GG. Res Vet Sci 91:92–97CrossRefGoogle Scholar
  44. Pocock T, Krol M, Huner NP (2004) The determination and quantification of photosynthetic pigments by reverse phase high-performance liquid chromatography, thin-layer chromatography, and spectrophotometry. Methods Mol Biol 274:137–148PubMedGoogle Scholar
  45. Quade MJ, Roth JA (1997) A rapid, direct assay to measure degranulation of bovine neutrophil primary granules. Vet Immunol Immunopathol 58:239–248CrossRefPubMedGoogle Scholar
  46. Sakai M (1999) Current research status of fish immunostimulants. Aquaculture 172:63–92CrossRefGoogle Scholar
  47. Satoh KI, Nakagawa H, Kasahara S (1987) Effect of Ulva meal supplementation on disease resistance of red sea bream. Nippon Suisan Gakkaishi 53:1115–1120Google Scholar
  48. Schiedt K, Vecchi M, Glinz E (1986) Absorption, retention and metabolic transformations of carotenoids in rainbow trout, salmon and chicken. Comp Biochem Physiol B 83:9–12CrossRefGoogle Scholar
  49. Schubert N, García-Mendoza E, Pacheco-Ruiz I (2006) Carotenoid composition of marine red algae. J Phycol 42:1208–1216CrossRefGoogle Scholar
  50. Shapawi R, Safiin N, Senoo S (2014) Improving dietary red seaweed Kappaphycus alvarezii (Doty) Doty ex. ex. P. Silva meal utilization in Asian seabass Lates calcarifer. J Appl Phycol 1–8Google Scholar
  51. Silva DM, Valente LMP, Sousa-Pinto I, Pereira R, Pires MA, Seixas F, Rema P (2015) Evaluation of IMTA-produced seaweeds (Gracilaria, Porphyra, and Ulva) as dietary ingredients in Nile tilapia, Oreochromis niloticus L., juveniles. Effects on growth performance and gut histology. J Appl Phycol. doi: 10.1007/s10811-014-0453-9:1-10
  52. Skrede G, Storebakken T (1986) Instrumental colour analysis of farmed and wild Atlantic salmon when raw, baked and smoked. Aquaculture 53:279–286CrossRefGoogle Scholar
  53. Soler-Vila A, Coughlan S, Guiry M, Kraan S (2009) The red alga Porphyra dioica as a fish-feed ingredient for rainbow trout (Oncorhynchus mykiss): effects on growth, feed efficiency, and carcass composition. J Appl Phycol 21:617–624CrossRefGoogle Scholar
  54. Sunyer JO, Tort L (1995) Natural hemolytic and bactericidal activities of sea bream Sparus aurata serum are effected by the alternative complement pathway. Vet Immunol Immunopathol 45:333–345CrossRefPubMedGoogle Scholar
  55. Teimouri M, Amirkolaie AK, Yeganeh S (2013) The effects of Spirulina platensis meal as a feed supplement on growth performance and pigmentation of rainbow trout (Oncorhynchus mykiss). Aquaculture 396–399:14–19CrossRefGoogle Scholar
  56. Terasaki M, Narayan B, Kamogawa H, Nomura M, Stephen NM, Kawagoe C, Hosokawa M, Miyashita K (2012) Carotenoid profile of edible Japanese seaweeds: An improved HPLC method for separation of major carotenoids. J Aquat Food Prod T 21:468–479CrossRefGoogle Scholar
  57. Torrissen OJ, Hardy RW, Shearer KD (1989) Pigmentation of salmonids—carotenoid deposition and metabolism critical review. Aquat Sci 1:209–225Google Scholar
  58. Valente LMP, Gouveia A, Rema P, Matos J, Gomes EF, Sousa-Pinto I (2006) Evaluation of three seaweeds Gracilaria bursa-pastoris, Ulva rigida and Gracilaria cornea as dietary ingredients in European sea bass (Dicentrarchus labrax) juveniles. Aquaculture 252:85–91CrossRefGoogle Scholar
  59. Wassef EA, El Masry MH, Mikhail FR (2001) Growth enhancement and muscle structure of striped mullet, Mugil cephalus L., fingerlings by feeding algal meal-based diets. Aquacult Res 32:315–322CrossRefGoogle Scholar
  60. Wathne E, Bjerkeng B, Storebakken T, Vassvik V, Odland AB (1998) Pigmentation of Atlantic salmon (Salmo salar) fed astaxanthin in all meals or in alternating meals. Aquaculture 159:217–231CrossRefGoogle Scholar
  61. Xu S, Zhang L, Wu Q, Liu X, Wang S, You C, Li Y (2011) Evaluation of dried seaweed Gracilaria lemaneiformis as an ingredient in diets for teleost fish Siganus canaliculatus. Aquacult Int 19:1007–1018CrossRefGoogle Scholar
  62. Xuan X, Wen X, Li S, Zhu D, Li Y (2013) Potential use of macro-algae Gracilaria lemaneiformis in diets for the black sea bream, Acanthopagrus schlegelii, juvenile. Aquaculture 412–413:167–172CrossRefGoogle Scholar
  63. Yanar Y, Büyükçapar H, Yanar M, Göcer M (2007) Effect of carotenoids from red pepper and marigold flower on pigmentation, sensory properties and fatty acid composition of rainbow trout. Food Chem 100:326–330CrossRefGoogle Scholar
  64. Zar J (1999) Biostatistical analysis, 4th edn. Prentice Hall, USA, 663pGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Mariana Araújo
    • 1
  • Paulo Rema
    • 2
  • Isabel Sousa-Pinto
    • 1
    • 3
  • Luís M. Cunha
    • 4
  • Maria João Peixoto
    • 1
  • Maria A. Pires
    • 2
  • Fernanda Seixas
    • 2
  • Vanda Brotas
    • 5
  • Carolina Beltrán
    • 5
  • Luísa M. P. Valente
    • 1
    • 6
  1. 1.CIIMAR/CIMAR-Centro Interdisciplinar de Investigação Marinha e AmbientalUniversidade do PortoPortoPortugal
  2. 2.CECAV/UTAD-Universidade de Trás-os-Montes e Alto DouroQuinta de PradosVila RealPortugal
  3. 3.FCUP-Departamento de BiologiaFaculdade de Ciências da Universidade do PortoPortoPortugal
  4. 4.REQUIMTE/DGAOT-Faculdade de Ciências da Universidade do PortoPortoPortugal
  5. 5.Centro de OceanografiaFaculdade de Ciências da Universidade de LisboaCampo GrandePortugal
  6. 6.ICBAS-Instituto de Ciências Biomédicas de Abel SalazarUniversidade do PortoPortoPortugal

Personalised recommendations