Advertisement

Journal of Applied Phycology

, Volume 28, Issue 1, pp 377–385 | Cite as

Saccharina latissima (Laminariales, Ochrophyta) farming in an industrial IMTA system in Galicia (Spain)

  • José R. C. FreitasJr.
  • Juan Manuel Salinas Morrondo
  • Javier Cremades UgarteEmail author
Article

Abstract

The development of integrated multitrophic aquaculture (IMTA) systems in Spain has been rather limited so far. However, trials carried out in recent years at experimental and at small industrial scale have been very promising. One of the most encouraging experiences involves the development of seaweed farming for human consumption in combination with mussel rafts in Galicia (NW Spain). Here, we describe a new and more productive marine farming system of Saccharina latissima (“sugar kelp”) combined with mussel rafts. We show its level of integration in terms of harvest and protein content as well as an assessment of the sources of assimilated nitrogen through the analysis of δ15N isotope ratios. Oceanographic conditions in Northwest Spain make S. latissima behave like a winter-spring species in culture with a growing period of just 5–6 months. Nonetheless, production values in our experiment equalled or exceeded those recorded in northern parts of the Atlantic where the culturing period is almost twice as long. Compared to natural populations, S. latissima from mussel-integrated culture systems had almost twice as much protein content, giving greater added value to the species both as food and feed.

Keywords

Seaweed aquaculture Phaeophyceae IMTA systems Mytilus Atlantic Ocean Protein enrichment Nitrogen supply Stable isotopes 

Notes

Acknowledgments

We thank PORTO-MUIÑOS Ltd., edible seaweed selling company (A Coruña, Galicia) for the facilities provided to carry out this work. We thank also Prof. A. Carballeria (University of Santiago de Compostela, Spain) for his invaluable help in interpreting the results of isotope analyses. This study was conducted within the Marine Culture National Plan “Integrated Aquaculture: Pilot experience for multi-trophic aquaculture development” (2008–2011) financed by National Advisory Board for Mariculture (JACUMAR). Ministry of Environment and Rural and Marine Environment, Government of Spain.

References

  1. Ahn O, Petrell RJ, Ahn O, Petrell RJ, Harrison PJ (1998) Ammonium and nitrate uptake by Saccharinalatissima and Nereocystisluetkeana originating from a salmon sea cage farm. J Appl Phycol 10:333–340CrossRefGoogle Scholar
  2. APROMAR (2013) La acuicultura marina en España. APROMAR. www.apromar.es/Informes. Accessed 10 Jan 2014
  3. Barrington K, Chopin T, Robinson S (2009) Integrated multi-trophic aquaculture (IMTA) in marine temperate waters. In: Soto D (ed) Integratedmariculture: a global review. FAO Fisheries and Aquaculture Technical Paper, No. 529, Rome, FAO, p 7–46Google Scholar
  4. Bayne BL, Widdows J, Thompson RJ (1976) Physiology II. In: Bayne BL (ed) Marine mussels: their ecology and physiology. Cambridge University Press, Cambridge, pp 207–260Google Scholar
  5. Bixler HJ, Porse H (2012) A decade of change in the seaweed hydrocolloids industry. J Appl Phycol 23:321–335CrossRefGoogle Scholar
  6. Brinkhuis BH, Mariani EC, Breda VA, Brady-Campbell MM (1984) Cultivation of Laminaria sacharina in the New York Marine Biomass Program. Hydrobiologia 116(117):177–266Google Scholar
  7. Buck BH, Buchholz CM (2004) The offshore-ring: a new system design for the open ocean aquaculture of macroalgae. J Appl Phycol 16:355–368CrossRefGoogle Scholar
  8. Cabanas JM, González JJ, Mariño J, Pérez A, Román G (1979) Estudio delmejillon y de su epifauna en los cultivos flotantes de la Ría de Arosa. III. Observaciones previas sobre la retención de partículas y la biodeposición de una batea. Bol Inst Esp Oceanogr 5:43–50 (in Spanish)Google Scholar
  9. Carballeira C, Espinosa J, Carballeira A (2011) Linking δ15N and histopathological effects in molluscs exposed in situ to effluents from land-based marine fish farms. Mar Pollut Bull 62:2633–2641Google Scholar
  10. Carballeira C, Viana IG, Carballeira A (2013) δ15N values of macroalgae as an indicator of the potential presence of waste disposal from land-based marine fish farms. J Appl Phycol 25:97–107CrossRefGoogle Scholar
  11. Chapman VJ, Chapman DJ (1980) Seaweeds and their uses. Chapman and Hall, London, 334 ppCrossRefGoogle Scholar
  12. Chopin T, Robinson S, Sawhney M, Bastarache S, Belyea E, Shea R, Armstrong W, Stewart I, Fitzgerald P (2004) The AquaNet integrated multi-trophic aquaculture project: rationale of the project and development of kelp cultivation as the inorganic extractive component of the system. Bull Aquac Assoc Can 104:11–18Google Scholar
  13. Cremades J, Freire Ó, Baamonde S, Salinas JM, Fuertes C (2007) Nuevo método para el cultivo industrial de Laminaria saccharina (Laminariales, Phaeophyta) en las costas gallegas. In: Cerviño Eiroa A, Guerra Díaz A, Pérez Acosta C (eds) Proceedings of theXI Congreso Nacional de Acuicultura, Consellería de Pesca e Asuntos Marítimos, Xunta de Galicia, Vigo, Spain, p 559–562 (in Spanish)Google Scholar
  14. de Castro M, Gómez-Gesteira M, Prego R, Taboada JJ, Montero P, Herbello P, Pérez-Villar V (2000) Wind and tidal influence on water circulation in a Galician ria (NW Spain). Estuar Coast Shelf Sci 51:161–176CrossRefGoogle Scholar
  15. Druehl LD, Baird R, Lindwall A, Lloyd KE, Pakula S (1988) Longline cultivation of some Laminariaceae in British Columbia, Canada. Aquacult Fish Manag 19:253–263Google Scholar
  16. Gómez Pinchetti JL, Suárez Álvarez S, Güenaga Unzetabarrenechea L, Figueroa FL, García Reina G (2011) Posibilidades para el desarrollo de sistemas integrados con macroalgas en las Islas Canarias y su entorno. In: Macroalgas en la Acuicultura Multitrófica Integrada Peninsular. Valorización de su Biomasa. Centro Tecnológico del Mar, Fundación CETMAR, Vigo (Spain), p 75–93 (in Spanish)Google Scholar
  17. Guiry M, Blunden G (1992) Seaweed resources in Europe: uses and potential. John Wiley, Chichester, 432 ppGoogle Scholar
  18. Haines KC, Wheeler PA (1978) Ammonium and nitrate uptake by the marine macrophytes Hypnea musciformis (Rhodophyta) and Macrocystis pyrifera (Phaeophyta). J Phycol 14:319–324CrossRefGoogle Scholar
  19. Handå A, Forbord S, Wang X, Broch OJ, Dahle SW, Størseth TR, Reitan KI, Olsen Y, Skjermo J (2013) Seasonal- and depth-dependent growth of cultivated kelp (Saccharina latissima) in close proximity to salmon (Salmo salar) aquaculture in Norway. Aquaculture 414–415:191–201Google Scholar
  20. Harrison PJ, Druehl LD, Lloyd KE, Thompson PA (1986) Nitrogen uptake kinetics in three year-classes of Laminaria groenlandica (Laminariales: Phaeophyta). Mar Biol 93:29–35CrossRefGoogle Scholar
  21. Heinrich S, Valentin K, Frickenhaus S, John U, Wiencke C (2012) Transcriptomicanalisis of acclimation to temperature and light stress in Saccharina latissima (Phaeophyceae). PLoS ONE 7(8):e44342Google Scholar
  22. Hernández I, Martínez-Aragón JF, Tovar A, Pérez-Lloréns JL, Vergara JJ (2002) Biofiltering efficiency in removal of dissolved nutrients by three species of estuarine macroalgae cultivated with sea bass (Dicentrarchus labrax) waste waters 2. Ammonium. J Appl Phycol 14:375–384CrossRefGoogle Scholar
  23. Hernández I, Pérez-Pastor A, Vergara J, Martínez-Aragón J, Fernández-Engo MÁ, Pérez-Lloréns JL (2006) Studies on the biofiltration capacity of Gracilariopsis longissima: from microscale to macroscale. Aquaculture 252:43–53CrossRefGoogle Scholar
  24. Hunt R (1982) Plant growth curves: the functional approach to plant growth analysis. Edward Arnold, London, 248 ppGoogle Scholar
  25. Huntington BE, Boyer KE (2008) Evaluating patterns of nitrogen supply using macroalgal tissue content and stable isotopic signatures in Tomales Bay, CA. Environ Bioindic 3:180–192CrossRefGoogle Scholar
  26. Jiménez del Río M, Ramazanov Z, García-Reina G (1994) Optimization of yield and biofiltering efficiencies of Ulva rigida C. Ag. cultivated with Sparus aurata L. waste waters. Sci Mar 58:329–335Google Scholar
  27. Jiménez del Río M, Ramazanov Z, García-Reina G (1996) Ulva rigida (Ulvales, Chlorophyta) tank culture as biofilters for disolved inorganic nitrogen from fishpond effluents. Hydrobiologia 326/327:61–65Google Scholar
  28. Kain (Jones) JM, Holt TJ, Dawes CP (1990) European Laminariales and their cultivation. In: Yarish C, Penniman CA, Van Petten P (eds) Economically important plants of the Atlantic: their biology and cultivation. Connecticut Sea Grant College Program, University of Connecticut, Groton, pp 95–111Google Scholar
  29. Kawashima S (1984) Kombu cultivations in Japan for human foodstuff. Jpn J Phycol 32:379–394Google Scholar
  30. Lobban CS, Harrison PJ (1994) Seaweed ecology and physiology. Cambrigdge University Press, Cambridge, 366 ppGoogle Scholar
  31. Lüning K (1979) Growth strategies of three Laminaria species (Phaeophyceae) inhabiting different depth zones in the sublittoral region of Helgoland (North Sea). Mar Ecol Prog Ser 1:195–207CrossRefGoogle Scholar
  32. Macías JC, Aguado F, González N, Guerrero S, Estévez A, Valencia JM, Cremades J (2008) Acuicultura Integrada: desarrollo de experiencias de cultivos multitróficos en la costa española. In: Rey-Méndez M, Lodeiros C, Fernández Casal J, Guerra A (eds) Foro Ac. Rec. Mar. Rías Gal. 10, p 483–490 (in Spanish)Google Scholar
  33. MAFF (1975) Energy allowances and feeding systems for ruminants.Technical Bulletin 33. Ministry of Agriculture, Fisheries and Food. HMSO, LondonGoogle Scholar
  34. Maihr OP, Ohno M, Matsuoka M (1991) Culture of brown alga Laminaria japonica (Phaeophyta, Laminariales) in warm waters of Shikoku, Japan. Indian J Mar Sci 20:55–60Google Scholar
  35. Martínez-Aragón JF, Hernández I, Pérez-Lloréns JL, Vásquez R, Vergara JJ (2002) Biofiltering efficiency in removal of dissolved nutrients by three species of estuarine macroalgae cultivated with sea bass (Dicentrarchus labrax) waste waters. 1. Phosphate. J Appl Phycol 14:365–374Google Scholar
  36. Miflin BJ, Lea PJ (1976) The pathway of nitrogen assimilation in plants. Phytochemistry 152:873–885CrossRefGoogle Scholar
  37. Pérez Camacho A, González R, Fuentes J (1991) Mussel culture in Galicia (N.W. Spain). Aquaculture 94:263–278CrossRefGoogle Scholar
  38. Perez R, Kaas R, Campello F, Arbault S, Barbaroux O (1992) La culture des algues marines dans le monde. Service de la Documentation et des Publications (SDP). IFREMER, Plouzane, France. 614 pp. (in French)Google Scholar
  39. Peteiro C, Freire Ó (2009) Effect of outplanting time on commercial cultivation of kelp Laminaria saccharinaat the southern limit in the Atlantic coast, N.W Spain. Chin J Oceanol Limnol 27:54–60Google Scholar
  40. Peteiro C, Freire Ó (2012) Observations on fish grazing of the cultured kelps Undaria pinnatifida and Saccharinal atissima (Phaeophyceae, Laminariales) in Spanish Atlantic waters. AACL Bioflux 5(4):189–196Google Scholar
  41. Peteiro C, Salinas JM, Freire Ó, Fuertes C (2006) Cultivation of the autoctonous seaweed Laminaria saccharina off the Galician coast (NW Spain): production and features of the sporophytes for an annual and biennial harvest. Thalassas 22:45–53Google Scholar
  42. Petrell RJ, Alie SY (1996) Integrated cultivation of salmonids and seaweeds in open systems. Hydrobiologia 326/327:67–73Google Scholar
  43. Ruitton S, Verlaque M, Aubin G, Boudouresque CF (2006) Gracing on Caulerpa racemosa var. cylindracea (Caulerpales, Chlorophyta) in the Mediterranean Sea by herbivorous fishes and sea urchins. Vie et Milieu 56:33–41Google Scholar
  44. Salinas Morrondo JM (2011) Cultivo de laminariales y acuicultura multitrófica. In: Macroalgas en la Acuicultura Multitrófica Integrada Peninsular. Valorización de su Biomasa. Centro Tecnológico del Mar, Fundación CETMAR, Vigo (Spain), p 29–51 (in Spanish)Google Scholar
  45. Sanderson JC, Dring MJ, Davidson K, Kelly MS (2012) Culture, yield and bioremediation potential of Palmaria palmata (Linnaeus) Weber & Mohr and Saccharina latíssima (Linnaeus) C.E. Lane, C. Mayes, Druehl & G.W. Saunders adjacente to fish farm cages in northwest Scotland. Aquaculture 354–355:128–135CrossRefGoogle Scholar
  46. Subandar A, Petrell RJ, Harrison PJ (1993) Laminaria culture for reduction of dissolved inorganic nitrogen in salmon farm effluent. J Appl Phycol 5:455–463CrossRefGoogle Scholar
  47. Syrett PJ (1981) Nitrogen metabolism of microalgae. Can Bull Fish Aquat Sci 210:182–210Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • José R. C. FreitasJr.
    • 1
  • Juan Manuel Salinas Morrondo
    • 2
  • Javier Cremades Ugarte
    • 1
    Email author
  1. 1.Coastal Biology Research Group (BioCost), Facultad de Ciencias and Centro de Investigaciones Científicas Avanzadas (CICA)Universidad de A CoruñaA CoruñaSpain
  2. 2.Planta de cultivo “El Bocal”Instituto Español de Oceanografía (IEO)Monte (Santander)Spain

Personalised recommendations