Journal of Applied Phycology

, Volume 27, Issue 6, pp 2173–2180 | Cite as

The chlorococcalean alga Chlorella in animal nutrition: a review

  • Václav Kotrbáček
  • Jaroslav Doubek
  • Jiří DouchaEmail author


Unicellular freshwater microalgae of the genus Chlorella are characterised by a relative ease of cultivation, high productivity and high content of proteins and other valuable components. However, the alga is too expensive to use widely as a protein supplement in animal feed. Nevertheless, in many experiments, it was found that even a very low, economically acceptable addition of Chlorella biomass to animal feed can positively influence growth and performance. This is due to the presence of pigments, antioxidants, provitamins, vitamins and a growth substance known as the Chlorella Growth Factor (CGF), which can stimulate or enhance the immune system, increase feed intake and utilisation and promote reproduction; the use of Chlorella biomass might therefore increase the value of animal products for human consumption. Significant results were also achieved in the use of Chlorella biomass as a carrier of organically bound selenium and iodine that play a substantial role in the thyroid hormone regulation in an organism.


Chlorella Chlorophyta Feed supplement Health effect Economy aspects 


  1. Baňoch T, Fajt Z, Kuta J, Kotrbáček V, Konečný R, Trávníček J, Svoboda M (2011) Utilization of iodine from different sources by sows and their progeny. Neuroendocrinol Lett 32:510–517PubMedGoogle Scholar
  2. Becker EW (1994) Microalgae: biotechnology and microbiology. Cambridge University Press, Cambridge, 293 pGoogle Scholar
  3. Becker EW (2004) The nutritional value of microalgae for aquaculture. In: Richmond A (ed) Handbook of microalgal mass cultures. CRC Press Inc. Boca Raton, Florida, pp 380–391Google Scholar
  4. Becker EW (2007) Micro-algae as a source of protein. Biotech Adv 25:207–210CrossRefGoogle Scholar
  5. Ben-Amotz A, Rachmilewich B, Greenberg S, Sela M, Weshler Z (1996) Natural β-carotene and whole body irradiation in rats. Radiat Environ Biophys 35:285–288CrossRefPubMedGoogle Scholar
  6. Berková E, Doucha J (1970) Chlorophyll synthesis and photosynthesis in synchronous cultures of Scenedesmus quadricauda. In: Nečas J, Lhotský O (eds) Annual Report Algolog Lab Třeboň for 1969:141–150Google Scholar
  7. Bobček B, Lahucký R, Mrázova J, Bobček R, Novotná K, Vašícek D (2004) Effects of dietary organic selenium supplementation on selenium content, antioxidative status of muscles and meat quality of pigs. Czech J Anim Sci 49:411–417Google Scholar
  8. Borowitzka MA (1997) Algae for aquaculture: opportunities and constraints. J Appl Phycol 9:393–401CrossRefGoogle Scholar
  9. Chisti Y (2007) Biodiesel from microalgae. Biotech Adv 25:294–306CrossRefGoogle Scholar
  10. Chrappa V (1989) Production effect of feeding of dried Chlorella biomass in broiler chickens. Živoč Výr 34:271–278 (in Czech)Google Scholar
  11. Cobbett C, Gouldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182CrossRefPubMedGoogle Scholar
  12. Dlouhá G, Ševčíková S, Dokoupilová A, Zita L, Heindl J, Skřivan M (2008) Effect of dietary selenium source on growth performance, breast muscle selenium, glutathione peroxidase activity and oxidative stability in broilers. Czech J Anim Sci 53:265–269Google Scholar
  13. Doucha J (1998) The Chlorella Programme in the Czech Republic. Inst Microbiol Acad Sci of the Czech Republic, Třeboň, 16 pGoogle Scholar
  14. Doucha J, Lívanský K (2001) Method of controlled cultivation of algae in heterotrophic mode of nutrition. Czech Patent 288638Google Scholar
  15. Doucha J, Lívanský K (2008a) Influence of processing parameters on disintegration of Chlorella cells in various types of homogenisers. Appl Microbiol Biotechnol 81:431–440CrossRefPubMedGoogle Scholar
  16. Doucha J, Lívanský K (2008b) Production strain of the alga Chlorella vulgaris BEIJ. strain Doucha et Lívanský 1996/H 14. Czech Patent 299352Google Scholar
  17. Doucha J, Lívanský K (2009) Outdoor open thin-layer microalgal photobioreactors: potential productivity. J Appl Phycol 21:111–112CrossRefGoogle Scholar
  18. Doucha J, Lívanský K (2014) High density microalgal culture. In: Bajpal R, Prokop A, Zappi M (eds) Algal biorefineries vol 1. Springer Science, Dordrecht, pp 147–171CrossRefGoogle Scholar
  19. Doucha J, Straka F, Lívanský K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412CrossRefGoogle Scholar
  20. Doucha J, Lívanský K, Kotrbáček V, Zachleder V (2009) Production of Chlorella biomass enriched by selenium and its use in animal nutrition: a review. Appl Microbiol Biotechnol 83:1001–1008CrossRefPubMedGoogle Scholar
  21. EUREKA project OE 221 (2006–2008) Use of carbon dioxide from flue gas for production of microalgae. Ministry of Education, Youth and Sports of the Czech Republic. Current Reports for 2006 and 2007Google Scholar
  22. Ewart HS, Bloch O, Girouard GS, Kralovec J, Barrow CJ, Ben-Jehudah G, Suárez ER, Rapoport MJ (2007) Stimulation of cytokine production in human peripheral blood mononuclear cell by an aqueous Chlorella extract. Planta Med 73:762–768CrossRefPubMedGoogle Scholar
  23. Fan TWM, Lane AN, Martens D, Higashi RM (1998) Synthesis and structure characterization of selenium metabolites. Analyst 123:875–884CrossRefGoogle Scholar
  24. Frederiksson S, Elwinger K, Pickova J (2006) Fatty acids and carotenoids composition of egg yolk as an effect of microalgae addition to feed formula to laying hens. Food Chem 99:530–537CrossRefGoogle Scholar
  25. Gattrel S, Lum K, Kim J, Lei XG (2014) Potential of defatted microalgae from biofuel industry as an ingredient to replace corn and soybean meal in swine and poultry diets. J Anim Sci 92:1306–1314CrossRefGoogle Scholar
  26. Goodwin TW (1986) Metabolism, nutrition, and function of carotenoids. Ann Rev Nutr 6:273–297CrossRefGoogle Scholar
  27. Gouveia L, Gomes E, Empis J (1997) Use of Chlorella vulgaris in diets for rainbow trout to enhance colouringation of muscle. J Appl Aquac 7:61–70CrossRefGoogle Scholar
  28. Gouveia L, Rema P, Pereira O, Empis J (2003) Colouring ornamental fish (Cyprinus carpio and Carassius auratus) with microalgal biomass. Aquac Nutr 9:123–129CrossRefGoogle Scholar
  29. Hasegawa T, Yoshikai Y, Okuda M, Nomoto K (1990) Accelerated restoration of the leukocyte number and augmented resistance against Escherichia coli in cyclophosphamide-treated rats orally administered with a hot water extract of Chlorella vulgaris. Int J Immunopharm 12:883–891CrossRefGoogle Scholar
  30. He ML, Hollwich W, Rambeck WA (2002) Supplementation of algae to the diet of pigs: a new possibility to improve the iodine content in the meat. J Anim Physiol Anim Nutr 86:97–104CrossRefGoogle Scholar
  31. Herzig I, Suchy P (1996) Contemporary view of the importance of iodine for animals. Vet Med-Czech 41:379–386Google Scholar
  32. Huang GH, Chen F, Wei D, Zhang XW (2010) Biodiesel production by microalgal biotechnology. Appl Energy 87:38–46CrossRefGoogle Scholar
  33. Ishibashi M (1971) Effect of Chlorella feeding on rats: effect on reproduction. Biol Abstracts 54:9694Google Scholar
  34. Iwamoto H (2004) Industrial production of microalgal cell-mass and secondary products—major industrial species Chlorella. In: Richmond A (ed) Handbook of microalgal mass cultures. CRC Press Inc, Boca Raton, pp 255–263Google Scholar
  35. Jahn S, Sparborth D, Thieme HJ (1995) Investigation of economic efficiency from Chlorella biomass in the piglet production. In: Abstracts of 2nd European Workshop Biotechnology of Microalgae, September 11–12, Bergholz-Rehbrücke, Germany, pp 108–111Google Scholar
  36. Jahn S, Sieber E, Sparborth D, Kühnel M (2005) A little green helpmate. Neue Landwirtschaft 1:64–65Google Scholar
  37. Janczyk P, Wolf C, Souffrant WB (2005) Evaluation of nutritional value and safety of the green microalgae Chlorella vulgaris treated with novel processing methods. Acta Zootech 8:132–147Google Scholar
  38. Janczyk P, Langhammer M, Renne U, Guiard V, Souffrant WB (2006) Effect of feed supplementation with Chlorella vulgaris powder on mice reproduction. Arch Zootech 9:122–134Google Scholar
  39. Janczyk P, Franke H, Souffrant WB (2007) Nutritional value of Chlorella vulgaris: effect of ultrasonication and electroporation on digestibility in rats. Anim Feed Sci Technol 132:163–169CrossRefGoogle Scholar
  40. Janczyk P, Halle B, Souffrant WB (2009) Microbial community composition of the crop and ceca content of lying hens fed diets supplemented with Chlorella vulgaris. Poultry Sci 88:2324–2332CrossRefGoogle Scholar
  41. Justo G, Silva MR, Queiroz MLS (2001) Effects of green algae (Chlorella vulgaris) on response of host hemopoietic system to intraperitoneal Ehrlich ascites tumor transplantation in mice. Immunopharm Immunot 23:119–132CrossRefGoogle Scholar
  42. Kang HK, Salim HM, Akter N, Kim DW, Bang HT, Kim MJ, Na JC, Hwangbo J, Chol HC, Suh OS (2013) Effect of various forms of dietary Chlorella supplementation on growth performance, immune characteristics, and intestinal microflora population of broiler chickens. J Appl Poultry Res 22:100–108CrossRefGoogle Scholar
  43. Köhler P, Storandt R, Pulz O (2008) Study on influence of algal supplementation on both reproduction performance of sows and parameters of piglet breeding. Acta Agron Óváriensis 50:53–66Google Scholar
  44. Kotrbáček V, Buryška J, Zelenka J, Doucha J, Jambor V (1993) Influence of the alga (Chlorella vulgaris) addition on some qualitative characteristics of eggs from hybrid ISA Brown hen. Veterinarstvi 43:218–220 (in Czech)Google Scholar
  45. Kotrbáček V, Halouzka R, Jurajda V, Knotková Z, Filka J (1994) Enhancement of defence mechanisms in broilers after administration of biological feed supplements. Vet Med-Czech 39:321–328Google Scholar
  46. Kotrbáček V, Chmelař L, Vizárova G, Doucha J, Chalanyiova M (2000) Isopentyladenin (2iP) isolated from Chlorella kessleri stimulates mitotic activity of animal cells in vitro. Czech J Anim Sci 45:4Google Scholar
  47. Kotrbáček V, Doucha J, Offenbartl T (2004) Use of Chlorella as a carrier of organic-bound iodine in the nutrition of sows. Czech J Anim Sci 49:28–32Google Scholar
  48. Kotrbáček V, Doubek J, Offenbartl F, Holešovská Z, Doucha J (2005) Reproductive function in sows-possibilities of their influencing. Veterinarstvi 55:280–283 (in Czech)Google Scholar
  49. Kotrbáček V, Skřivan M, Kopecký J, Pěnkava O, Hudečková P, Uhríková I, Doubek J (2013) Retention of carotenoids in egg yolks of laying hens supplemented with heterotrophic Chlorella. Czech J Anim Sci 58:193–200Google Scholar
  50. Krabačová I (2002) Morphological and functional changes of the thyroid at different saturation of farm animals with iodine. PhD Thesis. University of South Bohemia,, České Budějovice, CR, 120 p. (in Czech)Google Scholar
  51. Kralovec JA, Metera K, Kumar JR, Watson LV, Girouard GS, Guan Y, Can RI, Barrow CJ, Ewart NS (2007) Immunostimulatory principles from Chlorella pyrenoidosa—part 1: isolation and biological assessment in vitro. Phytomedicine 14:57–64CrossRefPubMedGoogle Scholar
  52. Kurza J, Herzig I, Suchý P (1998) Iodine deficit in farm animals. Náš Chov 58:34–35 (in Czech)Google Scholar
  53. Kvíčala J, Zamrazil V, Soutorová M, Tomiška F (1995) Correlation between parameters of body selenium status and peripheral thyroid parameters in the low selenium region. Analyst 120:959–965CrossRefPubMedGoogle Scholar
  54. Kvíčala J, Zamrazil V, Bílek R, Soutorová M, Dvořáková M, Šimečková A, Kantorová I, Pobišová Z, Čeřovská J, Jiránek V (1997) Low selenium status of inhabitants of South Bohemia and its relation to iodine and thyroid hormone metabolism. Biomarkers and Environment 1:12–20Google Scholar
  55. Lipstein B, Hurwitz S (1980) The nutritional value of algae for poultry. Dried Chlorella in broiler diets. Brit Poultry Sci 21:9–21CrossRefGoogle Scholar
  56. Machát J, Burianová I, Čmelík J, Nedobová E, Doucha J, Kanický V (2005) Distribution of selenium and iodine in Chlorella cells enriched during cultivation. In: Proc. 6th Eur. Workshop Eur. Soc. Microalgal Biotech. Nuthetal, May 23, Germany, pp 4–11Google Scholar
  57. Mader P, Mikolášek A, Lidická M, Nováková V, Hartlová L, Staněk J. (1984) Algae as a natural source of carotenoids in laying hen fed mixture. Živoč Výr 29(6):557–567 (in Czech)Google Scholar
  58. Mahan DC (2000) Effect of organic and inorganic selenium sources and levels on sow colostrum and milk selenium content. J Anim Sci 78:100–105PubMedGoogle Scholar
  59. Mahan DC, Kim YY (1996) Effect of inorganic or organic selenium at two dietary levels on reproductive performance and tissue selenium concentration in first-parity gilts and their progeny. J Anim Sci 74:2711–2718PubMedGoogle Scholar
  60. Mahan DC, Parrett N (1996) Evaluating the efficacy of Se enriched yeast and inorganic selenite on tissue retention and serum glutathione peroxidase activity in grower finisher swine. J Anim Sci 74:2967–2974PubMedGoogle Scholar
  61. Mahan DC, Peters JC (2004) Long-term effects dietary organic and inorganic selenium sources and level on reproducing sows and their progeny. J Anim Sci 82:1343–1358PubMedGoogle Scholar
  62. Müller-Fuega A (2000) The role of microalgae in aquaculture: situation and trends. J Appl Phycol 12:527–534CrossRefGoogle Scholar
  63. Müller-Fuega A (2004) Microalgae for aquaculture: the current global situation and future trends. In: Richmond A (ed) Handbook of microalgal mass cultures. CRC Press Inc. Boca Raton, Florida, pp 352–364Google Scholar
  64. Nagasawa H, Konishi R, Sensui N, Yamamoto K, Ben-Amotz A (1989) Inhibition by beta-carotene rich algae Dunaliella of spontaneous mammary tumourigenesis in mice. Anticancer Res 9:71–75PubMedGoogle Scholar
  65. Peto R, Doll R, Buckley JD, Sporn MB (1981) Can dietary beta-carotene materially reduce human cancer rates? Nature 290:201–208CrossRefPubMedGoogle Scholar
  66. Queiroz MLS, da Rocha MC, Torello CO, de Souza QJ, Bincoletto C, Morgano MA, Romano MR, Paredes-Gamero EJ, Barbosa CMV, Calgarotto AK (2011) Chlorella vulgaris restores bone marrow cellularity and cytokine production in lead-exposed mice. Food Chem Toxicol 49:2934–29410CrossRefPubMedGoogle Scholar
  67. Queiroz JS, Barbosa CM, Rocha MC, Bincoletto C, Paredes-Gamero EJ, Queroz MS, Neto JP (2013) Chlorella vulgaris treatment ameliorates the suppressive effect of single and repeated stressors on hematopoiesis. Brain Behavimmun 29:39–50Google Scholar
  68. Rayman MP (2000) The importance of selenium to human health. Lancet 356:233–241CrossRefPubMedGoogle Scholar
  69. Redel H, Buchta U (2001a) Effect of algae biomass on growth of Peking ducks. Results of production in farm Neuhardenberg. Jahresbericht Landesanstalt Landwirtschaft Brandenburg 5:109–111 (in German)Google Scholar
  70. Redel H, Buchta U (2001b) Effect of algae biomass on reproduction of Peking ducks. Jahresbericht Landesanstalt Landwirtschaft Brandenburg 5:112–113 (in German)Google Scholar
  71. Resnikoff S, Pascolini D, Etya‘ale D, Kocur J, Pararajasegaram R, Pokharel GP, Mariotti SP (2004) Global data on visual impairment in the year 2002. Bull World Health Organ 82:844–851PubMedCentralPubMedGoogle Scholar
  72. Rodinová H, Kroupová V, Trávníček J, Staňková M, Písek L (2008) Dynamics of IgG in blood serum of sheep with different selenium intake. Vet Med-Czech 53:260–265Google Scholar
  73. Rotkovská D, Vacek A, Bartoníčková A (1989) The radioprotective effects of aqueous extract from chlorococcal fresh water algae (Chlorella kessleri) in mice and rats. Strahlenther Onkol 165:813–816PubMedGoogle Scholar
  74. Rydlo O (1973) Verwendung der Mikroalgen in der praktischen Pharmazie. Pharmazie, pp 145–147Google Scholar
  75. Rydlo et al. (1976) Use of algal preparations in pharmacy, medical and veterinary practice. Final Report of three-years project (1974–1976). Inst. Microbiol. Třeboň (in Czech)Google Scholar
  76. Šafář F (1975) Algotherapie. Praktický lékař (Praha) 55:641–648 (in Czech)Google Scholar
  77. Sager M (2006) Selenium in agriculture, food, and nutrition. Pure Appl Chem 78:111–133CrossRefGoogle Scholar
  78. Schenk PM, Thomas-Hall SR, Stephens E, Marx UT, Mussgnung JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg Res 1:20–43CrossRefGoogle Scholar
  79. Ševčíková S, Skřivan M, Dlouhá G, Koucký M (2006) The effect of selenium source on the performance and meat quality of broiler chickens. Czech J Anim Sci 51:449–457Google Scholar
  80. Shields RJ, Lupatsch I (2012) Algae for aquaculture and animal feeds. Technikfolgenabschätzung – Theorie und Praxis 21(1):23–37Google Scholar
  81. Skřivan M, Šimáně J, Dlouhá G, Doucha J (2006) Effect of dietary sodium selenite, Se-enriched yeast and Se enriched Chlorella on egg Se concentration, physical parameters of eggs and laying hen production. Czech J Anim Sci 51:163–167Google Scholar
  82. Skřivan M, Šimáně J, Dlouhá G, Ševčíková S (2008) Dietary selenium increases vitamin E contents of egg yolk and chicken meat. Brit Poultry Sci 49:482–486CrossRefGoogle Scholar
  83. Soeder CJ (1986) An historical outline of applied algology. In: Richmond A (ed) Handbook of microalgal mass cultures. CRC Press Inc. Boca Raton, Florida, pp 25–41Google Scholar
  84. Storandt R, Pulz O, Franke H (2000) Algae in animal production. In: Institut für Tierernährung Braunschweig (ed): Expo 2000 - Workshop (FAL). Braunschweig, Germany, p 31 (in German)Google Scholar
  85. Surai PF (2002a) Selenium in poultry nutrition 1. Antioxidant properties, deficiency and toxicity. World Poultry Sci J 58:333–347CrossRefGoogle Scholar
  86. Surai PF (2002b) Selenium in poultry nutrition 2. Reproduction, egg and meat quality and practical applications. World Poultry Sci J 58:431–450CrossRefGoogle Scholar
  87. Svoboda M, Saláková A, Fait Z, Kotrbáček V, Ficek R, Drábek J (2009a) Efficacy of Se-enriched alga (Chlorella spp.) and Se-enriched yeast on tissue selenium retention and carcass characteristics in finisher pigs. Acta Vet Brno 78:579–587CrossRefGoogle Scholar
  88. Svoboda M, Kotrbáček V, Ficek R, Drábek J (2009b) Effect of organic selenium from Se-enriched alga (Chlorela spp.) on selenium transfer from sows to their progeny. Acta Vet Brno 78:373–377CrossRefGoogle Scholar
  89. Tanaka K, Yamada A, Noda K, Hasegawa T, Okuda M, Shoyama Y, Nomoto K (1998) A novel glycoprotein obtained from Chlorella vulgaris strain CK22 shows antimetastatic immunopotentiation. Cancer Immunol Immun 45:313–320CrossRefGoogle Scholar
  90. Taranu I, Marin DE, Untea A, Janczyk P, Motiu M, Criste RD, Souffrant WB (2012) Effect of dietary natural supplements on immune response and mineral bioavailability in pigments after weaning. Czech J Anim Sci 57:332–347Google Scholar
  91. Trávníček J, Písek L, Herzig I, Doucha J, Kvíčala J, Kroupová V, Rodinová H (2007) Selenium content in blood serum and urine of ewes receiving selenium-enriched unicellular alga Chlorella. Vet Med 52:42–48Google Scholar
  92. Trávníček J, Racek J, Trefil L, Rodinová H, Kroupová V, Illek J, Doucha J, Písek L (2008) Activity of glutathione peroxidase (GSH-Px) in the blood of ewes and their lambs receiving the selenium-enriched unicellular alga Chlorella. Czech J Anim Sci 53:292–29Google Scholar
  93. Trávníček J, Kroupová V, Konečný R, Staňková M, Štastná J, Hasoňová L, Mikulová M (2010) Iodine status in ewes with the intake of iodine enriched alga Chlorella. Czech J Anim Sci 55:58–65Google Scholar
  94. Vacek A, Rotkovská D, Bartoníčková A (1990) Radioprotection of haemopoiesis conferred by aqueous extract from chlorococcal algae (Ivastimul) administered to mice before irradiation. Exp Hematol 18:234–237PubMedGoogle Scholar
  95. Vacek A, Rotkovská D, Bartoníčková A, Kautská J (1992) Amelioration of radiation damage to haemopoiesis by Ivastimul, given after irradiation to mice protected by peroral cystamine. Folia Biol-Prague 38:323–331Google Scholar
  96. Vishwanathan R, Gooddrow-Kotyla EF, Wooten BR, Wilson TA, Nicolosi RJ (2009) Consumption of 2 and 4 eggs yolks for 5 wk increases of macular pigment concentration in older adults with low macular pigment taking cholesterol-lowering statins. Am J Clin Nutr 16:1272–1279CrossRefGoogle Scholar
  97. Whanger PD (1981) Selenium and heavy metal toxicity. In: Spalloltz J, Martin J, Ganther H (eds) Selenium in biology and medicine. Avi Pub Co, Westport, pp 250–255Google Scholar
  98. Yan L, Lim SU, Kim IH (2012) Effect of fermented Chlorella supplementation on growth performance, nutrient digestibility, blood characteristics, fecal microbial and fecal noxious gas content in growing pigs. Asian-Australas J Anim Sci 25:1742–1747PubMedCentralCrossRefPubMedGoogle Scholar
  99. Zheng LST Oh, Jeon JY, Moon BH, Kwon HS, Lim SU, An BK, Kang CW (2012) The dietary effects of fermented Chlorella vulgaris (CBT) on production performance, liver lipids and intestinal microflora in laying hens. Asian-Aust J Anim Sci 25:261–266Google Scholar
  100. Zmora O, Richmond A (2004) Microalgae for aquaculture. In: Richmond A (ed) Handbook of microalgal mass cultures. CRC Press Inc. Boca Raton, Florida, pp 365–379Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Václav Kotrbáček
    • 1
  • Jaroslav Doubek
    • 1
  • Jiří Doucha
    • 2
    Email author
  1. 1.University of Veterinary and Pharmaceutical SciencesBrnoCzech Republic
  2. 2.Laboratory of Cell Cycles of Algae, Institute of MicrobiologyAcademy of Sciences of the Czech RepublicTřeboňCzech Republic

Personalised recommendations