Journal of Applied Phycology

, Volume 27, Issue 5, pp 2137–2148 | Cite as

Anti-diabetic potential of selected Malaysian seaweeds

  • Yao Xian Chin
  • Phaik Eem Lim
  • Christine A. Maggs
  • Siew Moi Phang
  • Yusrizam SharifuddinEmail author
  • Brian D. Green
5th Congress of the International Society for Applied Phycology


The emergence of type 2 diabetes mellitus (T2DM) as the pre-eminent global non-infectious disease has driven the search for new anti-diabetic strategies including utilising traditional food and herbs. In this investigation, we describe the anti-diabetic potential of six selected Malaysian seaweed species against recognised pharmacological targets. Specifically, we measured their ability to inhibit α-glucosidase and dipeptidyl-peptidase-4 (DPP-4) and also their ability to stimulate incretin hormone secretion in vitro. Crude water extracts of Halimeda macroloba, Padina sulcata, Sargassum binderi and Turbinaria conoides possessed potent inhibitory activities against α-glucosidase and DPP-4. The highest inhibitory activity against α-glucosidase was found in water extracts of the green seaweed species H. macroloba with an IC50 value of 6.388 mg mL−1. Crude water extracts of the brown seaweeds studied namely P. sulcata, S. binderi and T. conoides, exhibited potent DPP-4 inhibition compared with the green seaweed H. macroloba. The brown seaweed also stimulates secretion of glucose-dependent insulinotrophic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) from pGIP neo STC-1 cells in vitro. H. macroloba stimulated GLP-1 secretion but not secretion of GIP.


α-glucosidase Algae Biotechnology Diabetes DPP-4 GIP GLP Seaweed 



This study was funded by the University of Malaya via RG109-11SUS and UMQUB2A-2011 research grants. Funding and support from Queen’s University Belfast is also acknowledged. Yao Xian Chin is a recipient of MyPhD Scholarship under the MyBrain15 Programme, Malaysian Ministry of Education.


  1. Ahren B (2010) Use of DPP-4 inhibitors in type 2 diabetes: focus on sitagliptin. Diabetes Metab Syndr Obes 3:31–41CrossRefPubMedPubMedCentralGoogle Scholar
  2. Al-masri IM, Mohammad MK, Tahaa MO (2009) Inhibition of dipeptidyl peptidase IV (DPP IV) is one of the mechanisms explaining the hypoglycemic effect of berberine. J Enzyme Inhib Med Chem 24:1061–1066CrossRefPubMedGoogle Scholar
  3. Arnfred J, Schmitz O, Hother-Nielsen O, Orskov C, Beck-Nielsen H, Hermansen K, Christiansen JS, Alberti KG, Orskov H (1988) Marked impairment of the effect of hyperglycaemia on glucose uptake and glucose production in insulin-dependent diabetes. Diabet Med 5:755–760CrossRefPubMedGoogle Scholar
  4. Ceriello A, Davidson J, Hanefeld M, Leiter L, Monnier L, Owens D, Tajima N, Tuomilehto J, International Prandial Glucose Regulation Study G (2006) Postprandial hyperglycaemia and cardiovascular complications of diabetes: an update. Nutr Metab Cardiovasc Dis 16:453–456CrossRefPubMedGoogle Scholar
  5. Cho SH, Kang SE, Cho JY, Kim AR, Park SM, Hong YK, Ahn DH (2007) The antioxidantproperties of brown seaweed (Sargassum siliquastrum) extracts. J Med Food 10(3):479–485Google Scholar
  6. de Alencar DB, da Silva SR, Pires-Cavalcante KM, de Lima RL, Pereira Junior FN, de Sousa MB, Viana FA, Nagano CS, do Nascimento KS, Cavada BS, Sampaio AH, Saker-Sampaio S (2014) Antioxidant potential and cytotoxic activity of two red seaweed species, Amansia multifida and Meristiella echinocarpa, from the coast of Northeastern Brazil. An Acad Bras Cienc 86:251–263CrossRefPubMedGoogle Scholar
  7. Dimitriadis G, Mitrou P, Lambadiari V, Maratou E, Raptis SA (2011) Insulin effects in muscle and adipose tissue. Diabetes Res Clin Pract 93(Suppl 1):S52–S59CrossRefPubMedGoogle Scholar
  8. Feisul M (2013) National diabetes registry report (2009–2012), vol 1. Ministry of Health, Kuala LumpurGoogle Scholar
  9. Forst T, Uhlig-Laske B, Ring A, Ritzhaupt A, Graefe-Mody U, Dugi KA (2011) The oral DPP-4 inhibitor linagliptin significantly lowers HbA1c after 4 weeks of treatment in patients with type 2 diabetes mellitus. Diabetes Obes Metab 13:542–550CrossRefPubMedGoogle Scholar
  10. Garber AJ (2011) Incretin effects on beta-cell function, replication, and mass: the human perspective. Diabetes Care 34(Suppl 2):S258–S263CrossRefPubMedPubMedCentralGoogle Scholar
  11. Hand KV, Giblin L, Green BD (2012) Hormone profiling in a novel enteroendocrine cell line pGIP/neo: STC-1. Metabolism 61:1683–1686CrossRefPubMedGoogle Scholar
  12. Harnedy P, FitzGerald R (2013) In vitro assessment of the cardioprotective, anti-diabetic and antioxidant potential of Palmaria palmata protein hydrolysates. J Appl Phycol 25:1793–1803CrossRefGoogle Scholar
  13. Heffernan N, Smyth TJ, Soler-Villa A, Fitzgerald RJ, Brunton NP (2014) Phenolic content and antioxidant activity of fractions obtained from selected Irish macroalgae species (Laminaria digitata, Fucus serratus, Gracilaria gracilis and Codium fragile). J Appl Phycol. doi: 10.1007/s10811-014-0291-9:1-12 Google Scholar
  14. Heo SJ, Hwang JY, Choi JI, Han JS, Kim HJ, Jeon YJ (2009) Diphlorethohydroxycarmalol isolated from Ishige okamurae, a brown algae, a potent alpha-glucosidase and alpha-amylase inhibitor, alleviates postprandial hyperglycemia in diabetic mice. Eur J Pharmacol 615:252–256CrossRefPubMedGoogle Scholar
  15. International Diabetes Federation. IDF Diabetes Atlas, 6th edn. Brussels, Belgium: International Diabetes Federation, 2013. Retrieved from on 15 June 2014.
  16. Iwai K (2008) Antidiabetic and antioxidant effects of polyphenols in brown alga Ecklonia stolonifera in genetically diabetic KK-A(y) mice. Plant Foods Hum Nutr 63:163–169CrossRefPubMedGoogle Scholar
  17. Kang MC, Wijesinghe WA, Lee SH, Kang SM, Ko SC, Yang X, Kang N, Jeon BT, Kim J, Lee DH, Jeon YJ (2013) Dieckol isolated from brown seaweed Ecklonia cava attenuates type II diabetes in db/db mouse model. Food Chem Toxicol 53:294–298CrossRefPubMedGoogle Scholar
  18. Karl T, Chwalisz WT, Wedekind D, Hedrich HJ, Hoffmann T, Jacobs R, Pabst R, von Horsten S (2003) Localization, transmission, spontaneous mutations, and variation of function of the Dpp4 (dipeptidyl-peptidase IV; CD26) gene in rats. Regul Pept 115:81–90CrossRefPubMedGoogle Scholar
  19. Kawamura-Konishi Y, Watanabe N, Saito M, Nakajima N, Sakaki T, Katayama T, Enomoto T (2012) Isolation of a new phlorotannin, a potent inhibitor of carbohydrate-hydrolyzing enzymes, from the brown alga Sargassum patens. J Agric Food Chem 60:5565–5570CrossRefPubMedGoogle Scholar
  20. Khan MA, Deaton C, Rutter MK, Neyses L, Mamas MA (2013) Incretins as a novel therapeutic strategy in patients with diabetes and heart failure. Heart Fail Rev 18:141–148CrossRefPubMedGoogle Scholar
  21. Kim MS, Kim JY, Choi WH, Lee SS (2008) Effects of seaweed supplementation on blood glucose concentration, lipid profile, and antioxidant enzyme activities in patients with type 2 diabetes mellitus. Nutr Res Pract 2:62–67CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kimura A, Lee JH, Lee IS, Lee HS, Park KH, Chiba S, Kim D (2004) Two potent competitive inhibitors discriminating alpha-glucosidase family I from family II. Carbohydr Res 339:1035–1040CrossRefPubMedGoogle Scholar
  23. Lee CW, Han JS (2012) Hypoglycemic effect of Sargassum ringgoldianum extract in STZ-induced diabetic mice. Prev Nutr Food Sci 17:8–13CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lee HJ, Kim HC, Vitek L, Nam CM (2010a) Algae consumption and risk of type 2 diabetes: Korean National Health and Nutrition Examination Survey in 2005. J Nutr Sci Vitaminol (Tokyo) 56:13–18CrossRefGoogle Scholar
  25. Lee HY, Won JC, Kang YJ, Yoon SH, Choi EO, Bae JY, Sung MH, Kim HR, Yang JH, Oh J, Lee YM, Park NH, Ko KS, Rhee BD (2010b) Type 2 diabetes in urban and rural districts in Korea: factors associated with prevalence difference. J Korean Med Sci 25:1777–1783CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lee SH, Park MH, Heo SJ, Kang SM, Ko SC, Han JS, Jeon YJ (2010c) Dieckol isolated from Ecklonia cava inhibits alpha-glucosidase and alpha-amylase in vitro and alleviates postprandial hyperglycemia in streptozotocin-induced diabetic mice. Food Chem Toxicol 48:2633–2637CrossRefPubMedGoogle Scholar
  27. Lee SH, Kang SM, Ko SC, Lee DH, Jeon YJ (2012) Octaphlorethol A, a novel phenolic compound isolated from a brown alga, Ishige foliacea, increases glucose transporter 4-mediated glucose uptake in skeletal muscle cells. Biochem Biophys Res Commun 420:576–581CrossRefPubMedGoogle Scholar
  28. Lordan S, Smyth TJ, Soler-Vila A, Stanton C, Ross RP (2013) The alpha-amylase and alpha-glucosidase inhibitory effects of Irish seaweed extracts. Food Chem 141:2170–2176CrossRefPubMedGoogle Scholar
  29. Madsbad S (2009) Exenatide and liraglutide: different approaches to develop GLP-1 receptor agonists (incretin mimetics)—preclinical and clinical results. Best Pract Res Clin Endocrinol Metab 23:463–477CrossRefPubMedGoogle Scholar
  30. Magalhaes KD, Costa LS, Fidelis GP, Oliveira RM, Nobre LT, Dantas-Santos N, Camara RB, Albuquerque IR, Cordeiro SL, Sabry DA, Costa MS, Alves LG, Rocha HA (2011) Anticoagulant, antioxidant and antitumor activities of heterofucans from the seaweed Dictyopteris delicatula. Int J Mol Sci 12:3352–3365CrossRefPubMedPubMedCentralGoogle Scholar
  31. Mancini-Filho J, Novoa AV, Gonzalez AE, de Andrade-Wartha ER, de OeSAM PJR, Mancini DA (2009) Free phenolic acids from the seaweed Halimeda monile with antioxidant effect protecting against liver injury. Z Naturforsch C 64:657–663CrossRefPubMedGoogle Scholar
  32. Mentlein R (2009) Mechanisms underlying the rapid degradation and elimination of the incretin hormones GLP-1 and GIP. Best Pract Res Clin Endocrinol Metab 23:443–452CrossRefPubMedGoogle Scholar
  33. Meyer C, Woerle HJ, Dostou JM, Welle SL, Gerich JE (2004) Abnormal renal, hepatic, and muscle glucose metabolism following glucose ingestion in type 2 diabetes. Am J Physiol Endocrinol Metab 287:E1049–E1056CrossRefPubMedGoogle Scholar
  34. Min SW, Han JS (2014) Polyopes lancifolia extract, a potent α-glucosidase inhibitor, alleviates postprandial hyperglycemia in diabetic mice. Prev Nutr Food Sci 19:5–9CrossRefPubMedPubMedCentralGoogle Scholar
  35. Mitrakou A, Kelley D, Mokan M, Veneman T, Pangburn T, Reilly J, Gerich J (1992) Role of reduced suppression of glucose production and diminished early insulin release in impaired glucose tolerance. N Engl J Med 326:22–29CrossRefPubMedGoogle Scholar
  36. Moon HE, Islam N, Ahn BR, Chowdhury SS, Sohn HS, Jung HA, Choi JS (2011) Protein tyrosine phosphatase 1B and alpha-glucosidase inhibitory Phlorotannins from edible brown algae, Ecklonia stolonifera and Eisenia bicyclis. Biosci Biotechnol Biochem 75:1472–1480CrossRefPubMedGoogle Scholar
  37. NHS (2014) Acarbose (Acarbose 100 mg tablets). National Health Servie (NHS).\Diabetes&medicine=acarbose&preparation. Accessed 15 June 2014
  38. Park MH, Han JS (2012) Hypoglycemic effect of Padina arborescens extract in streptozotocin-induced diabetic mice. Prev Nutr Food Sci 17:239–244CrossRefPubMedPubMedCentralGoogle Scholar
  39. Pattzi HM, Pitale S, Alpizar M, Bennett C, O’Farrell AM, Li J, Cherrington JM, Guler HP, Group P-PS (2010) Dutogliptin, a selective DPP4 inhibitor, improves glycaemic control in patients with type 2 diabetes: a 12-week, double-blind, randomized, placebo-controlled, multicentre trial. Diabetes Obes Metab 12:348–355CrossRefPubMedGoogle Scholar
  40. Ramirez-Higuera A, Quevedo-Corona L, Paniagua-Castro N, Chamorro-Ceballos G, Milliar-Garcia A, Jaramillo-Flores M (2014) Antioxidant enzymes gene expression and antihypertensive effects of seaweeds Ulva linza and Lessonia trabeculata in rats fed a high-fat and high-sucrose diet. J Appl Phycol 26:597–605CrossRefGoogle Scholar
  41. Rengasamy KR, Aderogba M, Amoo S, Stirk W, Van Staden J (2014) Macrocystis angustifolia is a potential source of enzyme inhibitors linked to type 2 diabetes and dementia. J Appl Phycol 26:1557–1563CrossRefGoogle Scholar
  42. Sellimi S, Kadri N, Barragan-Montero V, Laouer H, Hajji M, Nasri M (2014) Fucans from a Tunisian brown seaweed Cystoseira barbata: structural characteristics and antioxidant activity. Int J Biol Macromol 66:281–288CrossRefPubMedGoogle Scholar
  43. Sheu WH, Rosman A, Mithal A, Chung N, Lim YT, Deerochanawong C, Soewondo P, Lee MK, Yoon KH, Schnell O (2011) Addressing the burden of type 2 diabetes and cardiovascular disease through the management of postprandial hyperglycaemia: an Asian-Pacific perspective and expert recommendations. Diabetes Res Clin Pract 92:312–321CrossRefPubMedGoogle Scholar
  44. Tahrani AA, Piya MK, Barnett AH (2009) Saxagliptin: a new DPP-4 inhibitor for the treatment of type 2 diabetes mellitus. Adv Ther 26:249–262CrossRefPubMedGoogle Scholar
  45. Tanaka-Amino K, Hatakeyama Y, Takakura S, Mutoh S (2009) Constitutive increase in active GLP-1 levels by the DPP4 inhibitor ASP4000 on a new meal tolerance test in Zucker fatty rats. Pharmacol Res 60:264–269CrossRefPubMedGoogle Scholar
  46. Tarantola E, Bertone V, Milanesi G, Capelli E, Ferrigno A, Neri D, Vairetti M, Barni S, Freitas I (2012) Dipeptidylpeptidase-IV, a key enzyme for the degradation of incretins and neuropeptides: activity and expression in the liver of lean and obese rats. Eur J Histochem 56(4):e41CrossRefPubMedPubMedCentralGoogle Scholar
  47. Yamagishi SI, Nakamura K, Matsui T, Ueda SI, Imaizumi T (2007) Role of postprandial hyperglycaemia in cardiovascular disease in diabetes. Int J Clin Pract 61:83–87CrossRefPubMedGoogle Scholar
  48. Zhang CY, Wu WH, Wang J, Lan MB (2012) Antioxidant properties of polysaccharide from the brown seaweed Sargassum graminifolium (Turn.), and its effects on calcium oxalate crystallization. Mar Drugs 10:119–130CrossRefPubMedPubMedCentralGoogle Scholar
  49. Zimmet PZ (1999) Diabetes epidemiology as a tool to trigger diabetes research and care. Diabetologia 42:499–518CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Yao Xian Chin
    • 1
    • 2
  • Phaik Eem Lim
    • 1
    • 2
  • Christine A. Maggs
    • 3
  • Siew Moi Phang
    • 1
    • 2
  • Yusrizam Sharifuddin
    • 1
    • 2
    Email author
  • Brian D. Green
    • 4
  1. 1.Institute of Ocean and Earth SciencesUniversity of MalayaKuala LumpurMalaysia
  2. 2.Institute of Biological Sciences, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia
  3. 3.School of Biological Sciences, Medical Biology CentreQueen’s University BelfastBelfastUK
  4. 4.Institute for Global Food Security, School of Biological SciencesQueen’s University BelfastBelfastUK

Personalised recommendations