Journal of Applied Phycology

, Volume 27, Issue 4, pp 1389–1399 | Cite as

Dependency of the fatty acid composition of Euglena gracilis on growth phase and culture conditions

  • Jan-Philipp Schwarzhans
  • Dominik CholewaEmail author
  • Philipp Grimm
  • Usama Beshay
  • Joe-Max Risse
  • Karl Friehs
  • Erwin Flaschel


Usually, the fatty acid (FA) composition of lipids from microalgae is determined using samples taken at a single time point only, often without considering the medium composition and cultivation conditions. Therefore, the results only represent the FA composition of cells in a certain growth phase. Furthermore, they may misrepresent the capability of the organism to produce certain FA or lipid mixtures. In this study, 22 FA were analysed quantitatively during the cultivation of Euglena gracilis under different cultivation modes and conditions. For cell growth, various media compositions for heterotrophic and photoheterotrophic conditions were used. Results of extensive FA analysis allowed the determination of appropriate cultivation conditions and durations for yielding lipid mixtures with optimal composition, e.g. for the production of biodiesel or functional food. Drastic differences in the ratio between n3- and n6-polyunsaturated fatty acid (PUFA) ranging from 0.04 to 1.81 were detected. This effect was strongly influenced by the cultivation mode. In addition, media with higher nitrogen concentration resulted in a higher n3/n6-PUFA-ratio as well as improved specific growth rates for all analysed combinations of glucose and nitrogen concentrations. Furthermore, it was demonstrated that the inexpensive proteose peptone medium is ideal for lipid production by E. gracilis. This work provides valuable tools to optimise yield, productivity and n3/n6-PUFA ratio concerning the cultivation of E. gracilis as well as potentially other microalgae in general.


Euglena gracilis Fatty acids Biorefinery Proteose peptone Growth phase Growth conditions 



This work was supported by the German Egyptian Research Fund (Project-ID: EGY 08/017) of the International Bureau of the German Federal Ministry of Education and Research.


  1. Ackman R, Sipos J (1964) Application of specific response factors in the gas chromatographic analysis of methyl esters of fatty acids with flame ionization detectors. J Am Oil Chem Soc 41:377–378CrossRefGoogle Scholar
  2. Aladetohun A, Clarke A, Hart G, Pigeon A, Pasilla A, Ritter J, Shin DB, Verdugo D, Verdugo J, Zeng J (2006) A preliminary study into the feasibility of creating biodiesel from algae. University of Michigan, Ann ArbourGoogle Scholar
  3. Anderson GJ, Connor WE, Corliss JD (1990) Docosahexaenoic acid is the preferred dietary n-3 fatty acid for the development of the brain and retina. Pediatr Res 27:89–97PubMedCrossRefGoogle Scholar
  4. Barsanti L, Bastianini A, Passarelli V, Tredici MR, Gualtieri P (2000) Fatty acid content in wild type and WZSL mutant of Euglena gracilis—effects of carbon source and growth conditions. J Appl Phycol 12:515–520CrossRefGoogle Scholar
  5. Barsanti L, Passarelli V, Evangelista V, Frassanito AM, Gualtieri P (2011) Chemistry, physico-chemistry and applications linked to biological activities of β-glucans. Nat Prod Rep 28:457–466PubMedCrossRefGoogle Scholar
  6. Bigogno C, Khozin-Goldberg I, Boussiba S, Vonshak A, Cohen Z (2002) Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochemistry 60:497–503PubMedCrossRefGoogle Scholar
  7. Borowitzka MA (1988) Fats, oils and hydrocarbons. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal Biotechnology. Cambridge University Press, Cambridge, pp 257–287Google Scholar
  8. Briand J, Calvayrac R (1980) Paramylon synthesis in heterotrophic and photoheterotrophic Euglena (Euglenophyceae). J Phycol 16:234–239CrossRefGoogle Scholar
  9. Buetow DE (1989) The biology of Euglena, 4th edn. Academic, San DiegoGoogle Scholar
  10. Buetow DE (2011) Euglena. Encyclopedia of Life Scicience. John Wiley & Sons, Chichester, pp 1–5Google Scholar
  11. Chen F, Johns MR (1991) Effect of C/N ratio and aeration on the fatty acid composition of heterotrophic Chlorella sorokiniana. J Appl Phycol 3:203–209CrossRefGoogle Scholar
  12. Chiu SY, Kao CY, Tsai MT, Ong SC, Chen CH, Lin CS (2009) Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol 100:833–838PubMedCrossRefGoogle Scholar
  13. Cohen Z, Vonshak A, Richmond A (1987) Fatty acid composition of Spirulina strains grown under various environmental conditions. Phytochemistry 26:2255–2258CrossRefGoogle Scholar
  14. Coleman LW, Rosen BH, Schwartzbach SD (1988) Environmental control of carbohydrate and lipid synthesis in Euglena. Plant Cell Physiol 29:423–432Google Scholar
  15. Conda Laboratorios (2014) Proteose Peptone CAT No: 1609. Accessed 04 August 2014
  16. Connor WE (2000) Importance of n-3 fatty acids in health and disease. Am J Clin Nutr 71:171S–175SPubMedGoogle Scholar
  17. Cook JR, Cook B (1962) Effect of nutrients on the variation of individual generation times. Exp Cell Res 28:524–530PubMedCrossRefGoogle Scholar
  18. Culture Collection of Algae and Protozoa (2014) Proteose Peptone Medium. Accessed 04 August 2014
  19. Dunstan G, Volkman J, Barrett S, Garland C (1993) Changes in the lipid composition and maximisation of the polyunsaturated fatty acid content of three microalgae grown in mass culture. J Appl Phycol 5:71–83CrossRefGoogle Scholar
  20. Fidalgo JP, Cid A, Torres E, Sukenik A, Herrero C (1998) Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysis galbana. Aquaculture 166:105–116CrossRefGoogle Scholar
  21. Fraser TCM, Qi B, Elhussein S, Chatrattanakunchai S, Stobart AK, Lazarus CM (2004) Expression of the Isochrysis C18-Δ9 polyunsaturated fatty acid specific elongase component alters Arabidopsis glycerolipid profiles. Plant Physiol 135:859–866PubMedCentralPubMedCrossRefGoogle Scholar
  22. Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186PubMedCrossRefGoogle Scholar
  23. Harris R, Kirk J (1969) Control of chloroplast formation in Euglena gracilis. Antagonism between carbon and nitrogen sources. Biochem J 113:195–205PubMedCentralPubMedGoogle Scholar
  24. Heredia-Arroyo T, Wei W, Hu B (2010) Oil accumulation via heterotrophic/ mixotrophic Chlorella protothecoides. Appl Biochem Biotechnol 162:1978–1995PubMedCrossRefGoogle Scholar
  25. Herrero M, Cifuentes A, Ibanez E (2006) Sub-and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae: a review. Food Chem 98:136–148CrossRefGoogle Scholar
  26. Hugly S, Somerville C (1992) A role for membrane lipid polyunsaturation in chloroplast biogenesis at low temperature. Plant Physiol 99:197–202PubMedCentralPubMedCrossRefGoogle Scholar
  27. Hulanicka D, Erwin J, Bloch K (1964) Lipid metabolism of Euglena. J Biol Chem 239:2778–2787PubMedGoogle Scholar
  28. Innis SM (2007) Dietary (n-3) fatty acids and brain development. J Nutr 137:855–859PubMedGoogle Scholar
  29. Jan DC, Jones SJ, Emery AN, Al-Rubeai M (1994) Peptone, a low-cost growth-promoting nutrient for intensive animal cell culture. Cytotechnology 16:17–26PubMedCrossRefGoogle Scholar
  30. Jia Y, Du J, Fang H, Zhao G, Tian X (2013) Inhibition of freshwater algal species by co-culture with two fungi. Mater Sci Eng 33:2451–2454CrossRefGoogle Scholar
  31. Jones C, Cook J (1978) Culture pH, CO2 tension, and cell division in Euglena gracilis Z. J Cell Physiol 96:253–260PubMedCrossRefGoogle Scholar
  32. Knothe G (2008) “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuel 22:1358–1364CrossRefGoogle Scholar
  33. Knothe G (2013) Production and properties of biodiesel from algal oils. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 207–221CrossRefGoogle Scholar
  34. Koll M, Brandt P, Wiessner W (1980) Hemmung der lichtabhängigen Chloroplastenentwicklung etiolierter Euglena gracilis durch Glucose. Protoplasma 105:121–128CrossRefGoogle Scholar
  35. Krajcovic J, Ebringer L, Polonyi J (1989) Quinolones and coumarins eliminate chloroplasts from Euglena gracilis. Antimicrob Agents Chemother 33:1883–1889PubMedCentralPubMedCrossRefGoogle Scholar
  36. Kusmic C, Barsacchi R, Barsanti L, Gualtieri P, Passarelli V, Clinica F, Savi V (1999) Euglena gracilis as source of the antioxidant vitamin E. Effects of culture conditions in the wild strain and in the natural mutant WZSL. J Appl Phycol 10:555–559CrossRefGoogle Scholar
  37. Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31:1043–1049PubMedCrossRefGoogle Scholar
  38. Maag H (1984) Fatty acid derivatives: important surfactants for household, cosmetic and industrial purposes. J Am Oil Chem Soc 61:259–267CrossRefGoogle Scholar
  39. Mahapatra D, Chanakya H, Ramachandra T (2013) Euglena sp. as a suitable source of lipids for potential use as biofuel and sustainable wastewater treatment. J Appl Phycol 25:855–865CrossRefGoogle Scholar
  40. Mansour MP, Frampton DMF, Nichols PD, Volkman JK, Blackburn SI (2005) Lipid and fatty acid yield of nine stationary-phase microalgae: applications and unusual C24-C28 polyunsaturated fatty acids. J Appl Phycol 17:287–300CrossRefGoogle Scholar
  41. McCormick RL, Graboski MS, Alleman TL, Herring AM, Tyson KS (2001) Impact of biodiesel source material and chemical structure on emissions of criteria pollutants from a heavy-duty engine. Environ Sci Technol 35:1742–1747PubMedCrossRefGoogle Scholar
  42. Mendiola JA, Garcia-Martinez D, Ruperez FJ, Martin-Alvarez PJ, Reglero G, Cifuentes A, Barbas C, Ibanez E, Senorans FJ (2008) Enrichment of vitamin E from Spirulina platensis microalga by SFE. J Supercrit Fluids 43:484–489CrossRefGoogle Scholar
  43. Mongrand S, Bessoule J, Cabantous F, Cassagne C (1998) The C16:3\C18:3 fatty acid balance in photosynthetic tissues from 468 plant species. Phytochemistry 49:1049–1064CrossRefGoogle Scholar
  44. Nakamura S (1999) Application of sucrose fatty acid esters as food emulsifiers. In: Karsa DR (ed) Industrial Applications of Surfactants IV. Elsevier, Amsterdam, pp 73–87CrossRefGoogle Scholar
  45. Nicolas P, Freyssinet G, Nigon V (1980) Effect of light on glucose utilization by Euglena gracilis. Plant Physiol 65:631–634PubMedCentralPubMedCrossRefGoogle Scholar
  46. Oda Y, Miyatake K, Kitaoka S (1979) Inability of Euglena gracilis Z to utilize nitrate, nitrite and urea as the nitrogen sources. Bull Univ Osaka Pref 31:43–48Google Scholar
  47. Oda Y, Nakano Y, Kitaoka S (1982) Utilization and toxicity of exogenous amino acids in Euglena gracilis. J Gen Microbiol 128:853–858Google Scholar
  48. Ogbonna JC, Tomiyamal S, Tanaka H (1998) Heterotrophic cultivation of Euglena gracilis Z for efficient production of α-tocopherol. J Appl Phycol 10:67–74CrossRefGoogle Scholar
  49. Ogbonna JC, Ichige E, Tanaka H (2002) Interactions between photoautotrophic and heterotrophic metabolism in photoheterotrophic cultures of Euglena gracilis. Appl Microbiol Biotechnol 58:532–538PubMedCrossRefGoogle Scholar
  50. Olaveson MM, Nalewajko C (2000) Effects of acidity on the growth of two Euglena species. Hydrobiologia 433:39–56CrossRefGoogle Scholar
  51. Piorreck M, Baasch KH, Pohl P (1984) Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemistry 23:207–216CrossRefGoogle Scholar
  52. Qi B, Fraser T, Mugford S, Dobson G, Sayanova O, Butler J, Napier JA, Stobart AK, Lazarus CM (2004) Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat Biotechnol 22:739–745PubMedCrossRefGoogle Scholar
  53. Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–815PubMedCrossRefGoogle Scholar
  54. Regnault A, Chervin D, Chammai A, Piton F, Calvayrac R, Mazliak P (1995) Lipid composition of Euglena gracilis in relation to carbon-nitrogen balance. Phytochemistry 40:725–733CrossRefGoogle Scholar
  55. Riediger ND, Othman RA, Suh M, Moghadasian MH (2009) A systemic review of the roles of n-3 fatty acids in health and disease. J Am Diet Assoc 109:668–679PubMedCrossRefGoogle Scholar
  56. Rochetta I, Mazzuca M, Conforti V, Ruiz L, Balzaretti V, Rios des Molina M (2006) Effect of chromium on the fatty acid composition of two strains of Euglena gracilis. Environ Pollut 141:353–358CrossRefGoogle Scholar
  57. Rodríguez-Zavala JS, Ortiz-Cruz MA, Mendoza-Hernández G, Moreno-Sánchez R (2010) Increased synthesis of α-tocopherol, paramylon and tyrosine by Euglena gracilis under conditions of high biomass production. J Appl Microbiol 109:2160–2172PubMedCrossRefGoogle Scholar
  58. Rosenberg A (1967) Euglena gracilis: a novel lipid energy reserve and arachidonic acid enrichment during fasting. Science 157:1189–1191PubMedCrossRefGoogle Scholar
  59. Santek B, Felski M, Friehs K, Lotz M, Flaschel E (2009) Production of paramylon, a beta-1,3-glucan, by heterotrophic cultivation of Euglena gracilis on a synthetic medium. Eng Life Sci 1:23–28CrossRefGoogle Scholar
  60. Santek B, Friehs K, Lotz M, Flaschel E (2012) Production of paramylon, a β-1,3-glucan, by heterotrophic growth of Euglena gracilis on potato liquor in fed-batch and repeated-batch mode of cultivation. Eng Life Sci 12:89–94CrossRefGoogle Scholar
  61. Sheehan J, Dunahay T, Benemann J, Roessler P (1998) Look Back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from algae. National Renewable Energy Laboratory, Golden, Colorado. NREL/TP-580-24190 pp 1-328Google Scholar
  62. Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27:409–416PubMedCrossRefGoogle Scholar
  63. Sijtsma L, de Swaaf ME (2004) Biotechnological production and applications of the omega-3 polyunsaturated fatty acid docosahexaenoic acid. Appl Microbiol Biotechnol 64:146–153PubMedCrossRefGoogle Scholar
  64. Simopoulos AP (2008) The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med 233:674–688CrossRefGoogle Scholar
  65. Smedes F (1999) Determination of total lipid using non-chlorinated solvents. Analyst 124:1711–1718CrossRefGoogle Scholar
  66. Spoehr H, Milner H (1949) The chemical composition of Chlorella: effect of environmental conditions. Plant Physiol 24:120–149PubMedCentralPubMedCrossRefGoogle Scholar
  67. Sugiyama A, Hata S, Suzuki K, Yoshida E, Nakano R, Arashida R, Asayama Y, Yabuta Y, Takeuchi T (2010) Oral administration of paramylon, a β-1, 3-D-glucan isolated from Euglena gracilis Z inhibits development of atopic dermatitis-like skin lesions in NC/Nga mice. J Vet Med Sci 72:755–763PubMedCrossRefGoogle Scholar
  68. Sushchik N, Kalacheva G, Zhila N, Gladyshev M, Volova T (2003) A temperature dependence of the intra-and extracellular fatty-acid composition of green algae and cyanobacterium. Russ J Plant Physiol 50:374–380CrossRefGoogle Scholar
  69. Takeyama H, Kanamaru A, Yoshino Y, Kakuta H, Kawamura Y, Matsunaga T (1997) Production of antioxidant vitamins, β-carotene, vitamin C, and vitamin E, by two-step culture of Euglena gracilis Z. Biotechnol Bioeng 53:185–190PubMedCrossRefGoogle Scholar
  70. Tani Y, Osuka S (1989) α-Tocopherol production by an analog-resistant strain of Euglena gracilis Z. Agric Biol Chem 53:2313–2318CrossRefGoogle Scholar
  71. Tani Y, Tsumura H (1989) Screening for tocopherol-producing microorganisms and α-tocopherol production by Euglena gracilis Z. Agric Biol Chem 53:305–312CrossRefGoogle Scholar
  72. Teerawanichpan P, Qiu X (2010) Fatty acyl-CoA reductase and wax synthase from Euglena gracilis in the biosynthesis of medium-chain wax esters. Lipids 45:263–273PubMedCrossRefGoogle Scholar
  73. Tonon T, Harvey D, Larson TR, Graham IA (2002) Long chain polyunsaturated fatty acid production and partitioning to triacylglycerols in four microalgae. Phytochemistry 61:15–24PubMedCrossRefGoogle Scholar
  74. Tucci S, Vacula R, Krajcovic J, Proksch P, Martin W (2010) Variability of wax ester fermentation in natural and bleached Euglena gracilis strains in response to oxygen and the elongase inhibitor flufenacet. J Eukaryot Microbiol 57:63–69PubMedCrossRefGoogle Scholar
  75. Ward OP, Singh A (2005) Omega-3/6 fatty acids: alternative sources of production. Process Biochem 40:3627–3652CrossRefGoogle Scholar
  76. Xu Z, Harvey K, Pavlina T, Dutot G, Zaloga G, Siddiqui R (2010) An improved method for determining medium- and long-chain FAMEs using gas chromatography. Lipids 45:199–208PubMedCrossRefGoogle Scholar
  77. Yamane Y, Utsunomiya T, Watanabe M, Sasaki K (2001) Biomass production in mixotrophic culture of Euglena gracilis under acidic condition and its growth energetics. Biotechnol Lett 23:1223–1228CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Jan-Philipp Schwarzhans
    • 1
  • Dominik Cholewa
    • 1
    Email author
  • Philipp Grimm
    • 1
  • Usama Beshay
    • 1
    • 2
  • Joe-Max Risse
    • 1
  • Karl Friehs
    • 1
  • Erwin Flaschel
    • 1
  1. 1.Fermentation Engineering GroupBielefeld UniversityBielefeldGermany
  2. 2.Bioprocess Development Department, City for Scientific Research and Technology ApplicationsGenetic Engineering and Biotechnology Research Institute (GEBRI)AlexandriaEgypt

Personalised recommendations