Advertisement

Journal of Applied Phycology

, Volume 27, Issue 3, pp 1063–1077 | Cite as

Antenna size reduction as a strategy to increase biomass productivity: a great potential not yet realized

  • Tim de Mooij
  • Marcel Janssen
  • Oscar Cerezo-Chinarro
  • Jan H. Mussgnug
  • Olaf Kruse
  • Matteo Ballottari
  • Roberto Bassi
  • Sandrine Bujaldon
  • Francis-André Wollman
  • René H. Wijffels
Article

Abstract

A major limitation in achieving high photosynthetic efficiency in microalgae mass cultures is the fact that the intensity of direct sunlight greatly exceeds the photosynthetic capacity of the cells. Due to the high pigment content of algal cells, the light absorption rate surpasses the much slower conversion rate to biochemical energy. The excess of light energy is predominantly dissipated as heat, decreasing the light use efficiency of the culture. Algae with a truncated antenna system could substantially increase biomass productivity of mass cultures because oversaturation of the photosystems and concomitant dissipation of light energy are minimized. In this study, we measured the areal biomass productivity of wild-type strain cultures and four promising antenna size mutant cultures of Chlamydomonas reinhardtii. This was performed under simulated mass culture conditions. The strains were cultivated in turbidostat controlled lab-scale panel photobioreactors at an incident light intensity of 1500 μmol photons m−2 s−1. The mutant cultures did not exhibit the expected higher productivity. The greatest mutant culture productivity values were approximate to those of the wild-type productivity of 1.9 g m−2 h−1. The high sensitivity to abrupt light shifts indicated that the mutant cultures experienced reduced fitness and higher susceptibility to photodamage. This can possibly be explained by impaired photoprotection mechanisms induced by the antenna complex alterations, or by unintended side effects of the genetic modifications. Still, if these effects could be eliminated, the principle of antenna size reduction is a promising strategy to increase productivity. Selection criteria for the future creation of antenna size mutants should, therefore, include tolerance to high light conditions.

Keywords

Chlamydomonas reinhardtii Areal biomass productivity Photosynthetic efficiency Antenna size mutants Biomass yield on light energy 

Notes

Acknowledgements

This work is part of the research programme of the Foundation for Fundamental Research on Matter (FOM) which is part of the Netherlands Organization for Scientific Research (NWO). This project was conducted within the research programme of BioSolar Cells, co-financed by the Dutch Ministry of Economic Affairs.

Supplementary material

10811_2014_427_MOESM1_ESM.pdf (131 kb)
ESM 1 (PDF 130 kb)

References

  1. Alboresi A, Ballottari M, Hienerwadel R, Giacometti GM, Morosinotto T (2009) Antenna complexes protect photosystem I from photoinhibition. BMC Plant Biol 9:71CrossRefPubMedCentralPubMedGoogle Scholar
  2. Blanken W, Cuaresma M, Wijffels RH, Janssen M (2013) Cultivation of microalgae on artificial light comes at a cost. Algal Res 2:333–340CrossRefGoogle Scholar
  3. Bonente G, Formighieri C, Mantelli M, Catalanotti C, Giuliano G, Morosinotto T, Bassi R (2011) Mutagenesis and phenotypic selection as a strategy toward domestication of Chlamydomonas reinhardtii strains for improved performance in photobioreactors. Photosynth Res 108:107–120CrossRefPubMedGoogle Scholar
  4. Cuaresma M, Janssen M, Vílchez C, Wijffels RH (2011) Horizontal or vertical photobioreactors? How to improve microalgae photosynthetic efficiency. Bioresource Technol 102:5129–5137CrossRefGoogle Scholar
  5. De Vitry C, Wollman F-A (1988) Changes in phosphorylation of thylakoid membrane proteins in light-harvesting complex mutants from Chlamydomonas reinhardtii. BBA-Bioenerg 933:444–449CrossRefGoogle Scholar
  6. Deblois CP, Marchand A, Juneau P (2013) Comparison of photoacclimation in twelve freshwater photoautotrophs (Chlorophyte, Bacillaryophyte, Cryptophyte and Cyanophyte) isolated from a natural community. PLoS One 8:e57139CrossRefPubMedCentralPubMedGoogle Scholar
  7. Dubinsky Z, Falkowski PG, Wyman K (1986) Light harvesting and utilization by phytoplankton. Plant Cell Physiol 27:1335–1349Google Scholar
  8. Duboc P, Marison I, Von Stockar U (1999) Quantitative calorimetry and biochemical engineering. Handb Therm Anal Calorim 4:267–365CrossRefGoogle Scholar
  9. Dye DJ (2010) Spatial light dilution as a technique for conversion of solar energy to algal biomass. Dissertation, Utah State UniversityGoogle Scholar
  10. Formighieri C, Franck F, Bassi R (2012) Regulation of the pigment optical density of an algal cell: filling the gap between photosynthetic productivity in the laboratory and in mass culture. J Biotechnol 162:115–123CrossRefPubMedGoogle Scholar
  11. Grewe S, Ballottari M, Alcocer M, D’Andrea C, Blifernez-Klassen O, Hankamer B, Mussgnug JH, Bassi R, Kruse O (2014) Light-harvesting complex protein LHCBM9 is critical for photosystem II activity and hydrogen production in Chlamydomonas reinhardtii. Plant Cell 26:1598–1611CrossRefPubMedCentralPubMedGoogle Scholar
  12. Grossman AR, Bhaya D, Apt KE, Kehoe DM (1995) Light-harvesting complexes in oxygenic photosynthesis: diversity, control, and evolution. Annu Rev Genet 29:231–288CrossRefPubMedGoogle Scholar
  13. Huesemann MH, Hausmann TS, Bartha R, Aksoy M, Weissman JC, Benemann JR (2009) Biomass productivities in wild type and pigment mutant of Cyclotella sp. (Diatom). Appl Biochem Biotechnol 157:507–526CrossRefPubMedGoogle Scholar
  14. Hutner S, Provasoli L, Schatz A, Haskins C (1950) Some approaches to the study of the role of metals in the metabolism of microorganisms. Proc Am Philos Soc 94:152–170Google Scholar
  15. Janssen M, Janssen M, de Winter M, Tramper J, Mur LR, Snel J, Wijffels RH (2000) Efficiency of light utilization of Chlamydomonas reinhardtii under medium-duration light/dark cycles. J Biotechnol 78:123–137CrossRefPubMedGoogle Scholar
  16. Jassby AD, Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 21:540–547CrossRefGoogle Scholar
  17. Kirst H, García-Cerdán JG, Zurbriggen A, Melis A (2012) Assembly of the light-harvesting chlorophyll antenna in the green alga Chlamydomonas reinhardtii requires expression of the TLA2-CpFTSY gene. Plant Physiol 158:930–945CrossRefPubMedCentralPubMedGoogle Scholar
  18. Kliphuis AM, Klok AJ, Martens DE, Lamers PP, Janssen M, Wijffels RH (2012) Metabolic modeling of Chlamydomonas reinhardtii: energy requirements for photoautotrophic growth and maintenance. J Appl Phycol 24:253–266CrossRefPubMedCentralPubMedGoogle Scholar
  19. Kwon J-H, Bernát G, Wagner H, Rögner M, Rexroth S (2013) Reduced light-harvesting antenna: consequences on cyanobacterial metabolism and photosynthetic productivity. Algal Res 2:188–195CrossRefGoogle Scholar
  20. Liberton M, Collins AM, Page LE, O’Dell WB, O’Neill H, Urban VS, Timlin JA, Pakrasi HB (2013) Probing the consequences of antenna modification in cyanobacteria. Photosynth Res 118:17–24CrossRefPubMedGoogle Scholar
  21. Melis A (1999) Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo? Trends Plant Sci 4:130–135CrossRefPubMedGoogle Scholar
  22. Melis A (2009) Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci 177:272–280CrossRefGoogle Scholar
  23. Mussgnug JH, Thomas‐Hall S, Rupprecht J, Foo A, Klassen V, McDowall A, Schenk PM, Kruse O, Hankamer B (2007) Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Plant Biotechnol J 5:802–814CrossRefPubMedGoogle Scholar
  24. Nakajima Y, Ueda R (1998) Improvement of photosynthesis in dense microalgal suspension by reduction of light harvesting pigments. J Appl Phycol 9:503–510Google Scholar
  25. Nakajima Y, Ueda R (2000) The effect of reducing light-harvesting pigment on marine microalgal productivity. J Appl Phycol 12:285–290CrossRefGoogle Scholar
  26. Nakajima Y, Tsuzuki M, Ueda R (2001) Improved productivity by reduction of the content of light-harvesting pigment in Chlamydomonas perigranulata. J Appl Phycol 13:95–101CrossRefGoogle Scholar
  27. Norsker N-H, Barbosa MJ, Vermuë MH, Wijffels RH (2011) Microalgal production—a close look at the economics. Biotechnol Adv 29:24–27CrossRefPubMedGoogle Scholar
  28. Oey M, Ross IL, Stephens E, Steinbeck J, Wolf J, Radzun KA, Kügler J, Ringsmuth AK, Kruse O, Hankamer B (2013) RNAi knock-down of LHCBM1, 2 and 3 increases photosynthetic H2 production efficiency of the green alga Chlamydomonas reinhardtii. PLoS One 8:e61375CrossRefPubMedCentralPubMedGoogle Scholar
  29. Olive J, Wollman F-A, Bennoun P, Recouvreur M (1981) Ultrastructure of thylakoid membranes in C. reinhardtii: evidence for variations in the partition coefficient of the light-harvesting complex-containing particles upon membrane fracture. Arch Biochem Biophys 208:456–467CrossRefPubMedGoogle Scholar
  30. Ort DR, Zhu X, Melis A (2011) Optimizing antenna size to maximize photosynthetic efficiency. Plant Physiol 155:79–85CrossRefPubMedCentralPubMedGoogle Scholar
  31. Peers G, Truong TB, Ostendorf E, Busch A, Elrad D, Grossman AR, Hippler M, Niyogi KK (2009) An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 462:518–521CrossRefPubMedGoogle Scholar
  32. Perrine Z, Negi S, Sayre RT (2012) Optimization of photosynthetic light energy utilization by microalgae. Algal Res 1:134–142CrossRefGoogle Scholar
  33. Pirt S (1965) The maintenance energy of bacteria in growing cultures. Proc R Soc Lond B163:224–231CrossRefGoogle Scholar
  34. Polle JE, Kanakagiri S-D, Melis A (2003) tla1, a DNA insertional transformant of the green alga Chlamydomonas reinhardtii with a truncated light-harvesting chlorophyll antenna size. Planta 217:49–59PubMedGoogle Scholar
  35. Takache H, Christophe G, Cornet JF, Pruvost J (2010) Experimental and theoretical assessment of maximum productivities for the microalgae Chlamydomonas reinhardtii in two different geometries of photobioreactors. Biotechnol Progr 26:431–440Google Scholar
  36. Tanaka R, Tanaka A (2000) Chlorophyll b is not just an accessory pigment but a regulator of the photosynthetic antenna. Porphyrins 9:240–245Google Scholar
  37. Tokutsu R, Minagawa J (2013) Energy-dissipative supercomplex of photosystem II associated with LHCSR3 in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 110:10016–10021CrossRefPubMedCentralPubMedGoogle Scholar
  38. Tokutsu R, Iwai M, Minagawa J (2009) CP29, a monomeric light-harvesting complex II protein, is essential for state transitions in Chlamydomonas reinhardtii. J Biol Chem 284:7777–7782CrossRefPubMedCentralPubMedGoogle Scholar
  39. Tredici MR, Zittelli GC (1998) Efficiency of sunlight utilization: tubular versus flat photobioreactors. Biotechnol Bioeng 57:187–197CrossRefPubMedGoogle Scholar
  40. Vejrazka C, Janssen M, Benvenuti G, Streefland M, Wijffels RH (2013) Photosynthetic efficiency and oxygen evolution of Chlamydomonas reinhardtii under continuous and flashing light. Appl Microbiol Biotechnol 97:1523–1532CrossRefPubMedGoogle Scholar
  41. Zemke PE, Sommerfeld MR, Hu Q (2013) Assessment of key biological and engineering design parameters for production of Chlorella zofingiensis (Chlorophyceae) in outdoor photobioreactors. Appl Microbiol Biotechnol 97:5645–5655CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Tim de Mooij
    • 1
  • Marcel Janssen
    • 1
  • Oscar Cerezo-Chinarro
    • 1
  • Jan H. Mussgnug
    • 2
  • Olaf Kruse
    • 2
  • Matteo Ballottari
    • 3
  • Roberto Bassi
    • 3
  • Sandrine Bujaldon
    • 4
  • Francis-André Wollman
    • 4
  • René H. Wijffels
    • 1
  1. 1.Bioprocess Engineering, AlgaePARCWageningen UniversityWageningenThe Netherlands
  2. 2.Algae Biotechnology & Bioenergy Group, Department of Biology, Center for BiotechnologyBielefeld UniversityBielefeldGermany
  3. 3.Department of BiotechnologyUniversity of VeronaVeronaItaly
  4. 4.Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141Center National de la Recherche Scientifique/Université Pierre et Marie CurieParisFrance

Personalised recommendations