Journal of Applied Phycology

, Volume 27, Issue 3, pp 1177–1184 | Cite as

Characterization of the growth, biochemical composition, and nutrient utilization of the cyanobacterium Geitlerinema lemmermannii

  • Flor Sánchez-Alejandro
  • M. del Pilar Sánchez-SaavedraEmail author


Geitlerinema lemmermannii is a cosmopolitan cyanobacterium that is highly adapted to natural and artificial environments in which concentrations of phosphorus and nitrogen have been altered. G. lemmermannii was detected and isolated from the wastewater discharge of Mexican shrimp cultures. Its nutrition and potential incorporation into wastewater treatment were examined in a 168-h culture in an artificial wastewater medium at two concentrations each of nitrogen and phosphorus. G. lemmermannii showed a rapid phosphorus uptake (in the first 3 h of culture), ranging from 4.75 to 6.09 pg cell−1 h−1. Nitrogen uptake peaked at 9 h of culture at 2.38 pg cell−1 h−1. The total cellular lipid, carbohydrate, and protein content changed between treatments over culture time due to differences in uptake patterns but were similar at the end of the experiment. Additionally, the population and growth rate did not differ between culture media, indicating that the robust and rapid removal of nutrients from a synthetic medium occurred by this cyanobacterium.


Proximal composition Geitlerinema lemmermannii Growth Nutrient uptake 



This work was supported by Consejo Nacional de Ciencia y Tecnología (CONACyT 130074). The first author acknowledges a CONACYT special scholarship. Socorro Jiménez contributed to the taxonomic identification of G. lemmermannii. N. Flores-Acevedo and J. Dávila-Ortiz gave technical assistance. Thanks to the editorial bureau Blue Pencil Science for English editing of this manuscript.


  1. Aguilar-May B, Sánchez-Saavedra MP (2009) Growth and removal of nitrogen and phosphorus by free-living and chitosan-immobilized cells of the marine cyanobacterium Synechococcus elongatus. J Appl Phycol 21:353–360Google Scholar
  2. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Phys 37:911–917CrossRefGoogle Scholar
  3. Campa-Ávila MA (2002) Evaluación del efecto en el valor nutricio del rotifero Brachionus plicatilis alimentado con una microalga y una cianobacteria. Aquaculture Department M.Sc. Thesis. Centro de Investigación Científica y de Educación Superior de Ensenada, México, p 97Google Scholar
  4. Chomérat N, Garnier R, Bertrand C, Casaubon A (2007) Seasonal succession of cyanoprokaryotes in a hypereutrophic oligo-mesohaline lagoon from the South of France. Estuar Coast Shelf Sci 72:591–602CrossRefGoogle Scholar
  5. Cruz-Fraga CE (2003) Uso de la cianobacteria Arthrospira maxima para remover macronutrientes de efluentes producidos por cultivos. Aquaculture Department M.Sc. Thesis. Centro de Investigación Científica y de Educación Superior de Ensenada. Ensenada, Baja California, p 83Google Scholar
  6. Darley MW (1987) Biología de las Algas. Enfoque fisiológico. México D.F. Editorial Limusa S.A. de C.V. pp 236Google Scholar
  7. Dubois M, Gilies KA, Halmiton JD, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  8. Fierro S (2006) Informe de actividades de aislamiento y caracterización de cepas aisladas de granjas camaronicolas de Mexicali. Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE). Ensenada, Baja California, p 103Google Scholar
  9. Fogg GE, Thake BJ (1987) Algal Cultures and Phytoplankton Ecology. University of Wisconsin Press, London, p 448Google Scholar
  10. Guillard RRL, Ryther JH (1962) Studies on marine planktonic diatoms I. Cyclotella nana Huestedt and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239CrossRefPubMedGoogle Scholar
  11. Hach (1997) Water Analysis Handbook. HACH Company Loveland, USA, p 1309Google Scholar
  12. Herrero A, Flores E, Guerrero M (1985) Regulation of nitrate reductase celular levels in the cyanobacteria Anabaena variabilis and Synechocystis sp. FEMS Microbiol Lett 26:21–25CrossRefGoogle Scholar
  13. Kirkwood AE, Nalewajko C, Fulthorpe RR (2001) The occurrence of cyanobacteria in pulp and paper waste-treatments systems. Can J Microbiol 47:761–766CrossRefPubMedGoogle Scholar
  14. Komárek I, Anagnostidis K (2005) Cyanoprokaryota. 2nd Part Oscillatoriales. Elsevier Spektrum Akademischer Verlag, Italia, p 757Google Scholar
  15. López-Cortés A, García-Pichel F, Nübel U, Vázquez-Juárez R (2001) Cyanobacterial diversity in extreme environments in Baja California, Mexico: a polyphasic study. Int Microbiol 4:222–236Google Scholar
  16. Loreto C, Rosales N, Bermúdez J, Morales E (2003) Producción de pigmentos y proteínas de la cianobacteria Anabaena PCC 7120 en relación a la concentración de nitrógeno e irradiancia. Gayna Bot 60:83–90Google Scholar
  17. Lowry OH, Rosebrought NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  18. Luque I, Flores E, Hierro E (1994) Molecular mechanism for the operation of nitrogen control in cyanobacteria. EMBO J 13:2862–2869PubMedCentralPubMedGoogle Scholar
  19. Manzano C, Candau P, Gómez-Moreno C, Relimpio AM, Losada M (1976) Ferrodoxin-dependent photosintetic reduction of nitrate and nitrite by particles of Anacystis nidulans. Mol Cell Biochem 10:161–169CrossRefPubMedGoogle Scholar
  20. Major KM, Kirkwood AE, Major CS, McCreadie JW, Henley WJ (2005) In situ studies of algal biomass in relation to physicochemical characteristics of the Salt Plains National Wildlife Refuge, Oklahoma, USA. Saline Systems 1(11):10Google Scholar
  21. Metcalf L, Eddy HP, Tchobanoglous G (2004) Wastewater engineering: treatment and reuse, Fourth edition. McGraw-Hill, New York, p 1819Google Scholar
  22. Mexia-Bernal KH (2011) Efecto de la salinidad e irradiancia en el crecimiento, fotosíntesis y composición de Spirulina maxima para su utilización en la acuicultura. Bachelor Thesis, Universidad de Occidente, Unidad Guasave, Sinaloa, México, p 96Google Scholar
  23. MEA (Millennium Ecosystem Assessment) (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DC, p 80Google Scholar
  24. Miller SR, Castenholz RW (2001) Ecological physiology of Synechococcus sp. strain SH-94-5, a naturally occurring cyanobacterium deficient in nitrate assimilation. Appl Environ Microbiol 67:3002–3009CrossRefPubMedCentralPubMedGoogle Scholar
  25. Nieves M, Voltolina D, Barrera A (1998) A new parameter for comparison of microalgae growth. Riv Ital Acquacolt 33:177–184Google Scholar
  26. Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford, p 173Google Scholar
  27. Pratt R, Johnson E (2006) Production of protein and lipid by Chlorella vulgaris and Chlorella pyrenoidosa. J Pharm Sci 52:979–984CrossRefGoogle Scholar
  28. Reyes JC, Chávez S, Muro-Pastor MI, Candau P, Florencio FJ (1993) Effect of glucose utilization on nitrite excretion by the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. Appl Environ Microbiol 59:3161–3163PubMedCentralPubMedGoogle Scholar
  29. Roger PA, Tirol A, Santiago-Ardales S, Watanabe I (1986) Chemical composition of cultures and natural samples of N2-fixing blue-green algae from rice fields. Biol Fert Soils 2:131–146CrossRefGoogle Scholar
  30. Roger PA (2005) N2-fixing cyanobacteria as biofertilizers in rice fields. In: Richmond a (ed) Handbook of Microalgal Culture. Biotechnology and Applied Phycology. Blackwell Publishing, Oxford, pp 392–402Google Scholar
  31. Rüker J, Kohl J, Kaiser K (1995) Responses of carotenoids and to variations of growth-limiting factors in three filamentous blue-green algae. Algol Stud 77:51–65Google Scholar
  32. Sánchez-Saavedra MP, Voltolina D (1994) The chemical composition of Chaetoceros sp. (Bacillariophyceae) under different light conditions. Comp Biochem Physiol 107B:30–44Google Scholar
  33. Sorokin C (1973) Dry weight, packed cell volumen and optical density. In: Stein JR (ed) Handbook of phycological methods. Culture Methods and Growth Measurements. Cambridge University Press, Cambridge, UK, pp 321–344Google Scholar
  34. Suzuki I, Horie N, Sugiyama T, Omata T (1995) Identification and characterization of two nitrogen-regulated genes of the cyanobacterium Synechococcus sp. strain PCC7942 required for maximum efficiency of nitrogen assimilation. J Bacteriol 177:290–296PubMedCentralPubMedGoogle Scholar
  35. Torres-Ariño A, Mora-Heredia E (2010) Isolation and characterization of potentially toxic or harmful cyanobacteria from Oaxaca and Chiapas, Mexico. J Environ Sci Heal A 45:128–136CrossRefGoogle Scholar
  36. Vicente E, Miracle MR (1992) The coastal lagoon Albufera de Valencia: an ecosystem under stress. Limnetica 8:87–100Google Scholar
  37. Vonshak A (1986) Laboratory techniques for the cultivation of microalgae. In: Richmond DA (ed) CRC handbook of microalgal mass culture. Boca Raton, Florida, pp 117–145Google Scholar
  38. Voltolina D (1985) Biomass evaluation in cultures of benthic diatoms: an experimental review of methodology. Coast Marine Science Laboratory Internal Manuscript Series 85:4 Royal Roads Military College, Victoria, B.C. Cánada, p 86Google Scholar
  39. Wang Q, Li H, Post AF (2000) Nitrate assimilation genes of the marine diazotrophic, filamentous cyanobacteria Trichodesmium sp. strain WH9601. J Bacteriol 182:1764–1767CrossRefPubMedCentralPubMedGoogle Scholar
  40. Whitton BA, Potts M (2000) The ecology of cyanobacteria: their diversity in time and space. Dordrecht, Kluwer, p 669Google Scholar
  41. Whyte JNC (1987) Biochemical composition and energy content of six species of phytoplankton used in mariculture of bivalves. Aquaculture 6:231–241CrossRefGoogle Scholar
  42. Zhu CJ, Lee YK (1997) Determination of biomass dry weight of marine microalgae. J Appl Phycol 9:189–194CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Flor Sánchez-Alejandro
    • 1
  • M. del Pilar Sánchez-Saavedra
    • 1
    Email author
  1. 1.Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE)EnsenadaMéxico

Personalised recommendations