Advertisement

Journal of Applied Phycology

, Volume 27, Issue 3, pp 1149–1159 | Cite as

UPLC-MS analysis of Chlamydomonas reinhardtii and Scenedesmus obliquus lipid extracts and their possible metabolic roles

  • Durlubh Kumar Sharma
  • Kshipra GautamEmail author
  • Jessica Jueppner
  • Patrick Giavalisco
  • Liisa Rihko-Struckmann
  • Ashwani Pareek
  • Kai Sundmacher
Article

Abstract

The paper presents the ultra-performance liquid chromatography (UPLC) and high-resolution mass spectrometric analysis and comparison of total lipid profiles of two green algal species, Chlamydomonas reinhardtii and Scenedesmus (Acutodesmus) obliquus. The targeted UPLC-mass spectroscopy (MS) analysis revealed that both the green algae showed the presence of almost similar types of lipids. However, there were differences in the presence of three triacylglycerol (TAG) species (TAG 54:4, TAG 54:5 and TAG 54:8) and two diacylglycerol (DAG) species (DAG 36:3 and DAG 36:4) in C. reinhardtii that were found to be completely absent in Scenedesmus obliquus. The triacylglycerol content in S. obliquus was five times more than that in C. reinhardtii. In addition, amount of diacylglycerol-O-(N,N,N-trimethyl) homoserine, a characteristic algal lipid, in S. obliquus was only half of that in C. reinhardtii. The paper also discusses the metabolic roles of the lipids produced by these algal species with reference to the lipids identified by UPLC-MS analysis.

Keywords

UPLC-MS analysis Chlorophyta Metabolic role Triglyceride Lipid 

References

  1. Anderson RA (2005) Algal culturing techniques. Elsevier Academic Press, LondonGoogle Scholar
  2. Arisz SA, Testerink C, Munnik T (2009) Plant PA signaling via diacylglycerol kinase. Biochim Biophys Acta 1791:869–875CrossRefPubMedGoogle Scholar
  3. Awai K, Watanabe H, Benning C, Nishida I (2007) Digalactosyldiacylglycerol is required for better photosynthetic growth of Synechocystis sp. PCC6803 under phosphate limitation. Plant Cell Physiol 48:1517–1523CrossRefPubMedGoogle Scholar
  4. Beal CM, Webber ME, Ruoff RS, Hebner RE (2010) Lipid analysis of Neochloris oleoabundans by liquid state NMR. Biotechnol Bioeng 106:573–583CrossRefPubMedGoogle Scholar
  5. Bligh EG, Dyer WJ (1959) A rapid method for total lipid extraction and purification. Can J Biochem Phys 37:911–917CrossRefGoogle Scholar
  6. Canto de Loura I, Duabacq JP, Thomas JC (1987) The effects of nitrogen deficiency on pigments and lipids of cyanobacteria. Plant Physiol 83:838–843CrossRefGoogle Scholar
  7. Chisti Y (2007) Biodiesel from algae. Biotechnol Adv 25:294–306CrossRefPubMedGoogle Scholar
  8. Danhorn T, Hentzer M, Givskov M, Parsek MR, Fuqua C (2004) Phosphorus limitation enhances biofilm formation of the plant pathogen Agrobacterium tumefaciens through the PhoR-PhoB regulatory system. J Bacteriol 186:4492–4501CrossRefPubMedCentralPubMedGoogle Scholar
  9. Deeba F, Kumar V, Gautam K, Saxena RK, Sharma DK (2012) Bioprocessing of Jatropha curcas seed oil and deoiled seed hulls for the production of biodiesel and biogas. Biomass Bioenerg 40:13–18CrossRefGoogle Scholar
  10. Ducharme NA, Bickel PE (2008) Minireview: lipid droplets in lipogenesis and lipolysis. Endocrinol 149:942–949CrossRefGoogle Scholar
  11. Gautam K, Pareek A, Sharma DK (2013) Biochemical composition of green alga Chlorella minutissima in mixotrophic cultures under the effect of different carbon sources. J Biosci Bioeng 116:624–627CrossRefPubMedGoogle Scholar
  12. Giroud C, Gerber A, Eichenberger W (1989) Lipids of Chlamydomonas reinhardtii: analysis of molecular species and intracellular site(s) of biosynthesis. Plant Cell Physiol 29:587–595Google Scholar
  13. Gorman DS, Levine RP (1965) Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 54:1665–1669CrossRefPubMedCentralPubMedGoogle Scholar
  14. Guella G, Frassanito R, Mancini I (2003) A new solution for an old problem: the regiochemical distribution of the acyl chains in galactolipids can be established by electrospray ionization tandem mass Spectrometry. Rapid Commun Mass Spectrom 17:1982–1994CrossRefPubMedGoogle Scholar
  15. Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186CrossRefPubMedGoogle Scholar
  16. Harwood JL (1998) Membrane lipids in algae. In: Siegenthaler P-A, Murata N (eds) Lipids in photosynthesis: structure, function and genetics. Springer, Netherlands, pp 53–64Google Scholar
  17. Harwood JL, Guschina IA (2009) The versatility of algae and their lipid metabolism. Biochimie 91:679–684CrossRefPubMedGoogle Scholar
  18. He H, Rodgers RP, Marshall AG, Hsu CS (2011) Algae polar lipids characterized by online liquid chromatography coupled with hybrid linear quadrupole ion trap/Fourier transform ion cyclotron resonance mass spectrometry. Energ Fuels 25:4770–4775CrossRefGoogle Scholar
  19. Hegewald E, Hanagata N (2000) Phylogenetic studies on Scenedesmaceae (Chlorophyta). Algol Stud/Arch Hydrobiol Suppl 100:29–49Google Scholar
  20. Holdt SL, Kraan S (2011) Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 23:543–597CrossRefGoogle Scholar
  21. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639CrossRefPubMedGoogle Scholar
  22. Hummel J, Segu S, Li Y, Irgang S, Jueppner J, Giavalisco P (2011) Ultra performance liquid chromatography and high resolution mass spectrometry for the analysis of plant lipids. Front Plant Sc 2:1–17Google Scholar
  23. Jackowski S, Wang J, Baburina I (2000) Activity of the phosphatidylcholine biosynthetic pathway modulates the distribution of fatty acids into glycerolipids in proliferating cells. Biochim Biophys Acta 1483:301–315CrossRefPubMedGoogle Scholar
  24. Jones J, Manning S, Montoya M, Keller K, Poenie M (2012) Extraction of algal lipids and their analysis by HPLC and mass spectrometry. J Am Oil Chem Soc 89:1371–1381Google Scholar
  25. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 41:909–917CrossRefGoogle Scholar
  26. Kumar G, Srivastava R, Singh R (2013) Exploring biodiesel: chemistry, biochemistry, and microalgal source. Intl J Green Energ 10:775–796CrossRefGoogle Scholar
  27. Langford ML (2010) Farnesol signaling in Candida albicans. PhD Thesis, University of Nebraska – Lincoln, USAGoogle Scholar
  28. Laurens LML, Wolfrum EJ (2011) Feasibility of spectroscopic characterization of algal lipids: chemometric correlation of NIR and FTIR spectra with exogenous lipids in algal biomass. Bioenerg Res 4:22–35CrossRefGoogle Scholar
  29. Li H, Yan X, Xu J, Zhou C (2008) Precise identification of photosynthetic glycerolipids in microalga Tetraselmis chuii by UPLC-ESI-Q-TOF-MS. Sci China C Life Sci 51:1101–1107CrossRefPubMedGoogle Scholar
  30. Lima ES, Abdalla DSP (2002) High-performance liquid chromatography of fatty acids in biological samples. Anal Chim Acta 465:81–91CrossRefGoogle Scholar
  31. Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X, Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428:287–292CrossRefPubMedGoogle Scholar
  32. Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438:1040–1044CrossRefPubMedGoogle Scholar
  33. Mashburn-Warren L, Howe J, Garidel P, Richter W, Steiniger F, Roessle M, Brandenburg K, Whiteley M (2008) Interaction of quorum signals with outer membrane lipids: insights into prokaryotic membrane vesicle formation. Mol Microbiol 69:491–502CrossRefPubMedCentralPubMedGoogle Scholar
  34. Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D (2008) Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res 49:1137–1146CrossRefPubMedCentralPubMedGoogle Scholar
  35. Miranda MS, Cintra RG, Barros SBM, Mancini-Filho J (1998) Antioxidant activity of the microalga Spirulina maxima. Braz J Med Biol Res 31:1075–1079CrossRefPubMedGoogle Scholar
  36. Munnik T, Testerink C (2009) Plant phospholipid signaling-in a nutshell. J Lipid Res 50:260–265CrossRefGoogle Scholar
  37. Munnik T, Irvine RF, Musgrave A (1998) Phospholipid signalling in plants. Biochim Biophys Acta 1389:222–272CrossRefPubMedGoogle Scholar
  38. Nevada Renewable Energy Consortium (2011) Algal-based biofuels, final report, subtask 1.3. Desert Research Institute, Reno, p 38Google Scholar
  39. Nickerson KW, Atkin AL, Hornby JM (2006) Quorum sensing in dimorphic fungi: farnesol and beyond. Appl Environ Microbiol 72:3805–3813CrossRefPubMedCentralPubMedGoogle Scholar
  40. Ogiso H, Suzuki T, Taguchi R (2008) Development of a reverse-phase liquid chromatography electrospray ionization mass spectrometry method for lipidomics, improving detection of phosphatidic acid and phosphatidylserine. Anal Biochem 375:124–131CrossRefPubMedGoogle Scholar
  41. Ravishankar GA, Sarada R (2007) Proc. Discussion meeting on energy biosciences, Department of Biotechnology. Minist Sci TechnolGoogle Scholar
  42. Sato N, Hagio M, Wada H, Tsuzuki M (2000) Requirement of phosphatidylglycerol for photosynthetic function in thylakoid membranes. Proc Natl Acad Sci 97:10655–10660CrossRefPubMedCentralPubMedGoogle Scholar
  43. Sayre R (2010) Microalgae: the potential for carbon capture. Bioscience 60:724–727CrossRefGoogle Scholar
  44. Schlapfer P, Eichenberger W (1983) Evidence for the involvement of diacylglyceryl(N, N, N-trimethyl)-homoserine in the desaturation of oleic and linoleic acids in Chlamydomonas reinhardtii (Chlorophyceae). Plant Sci 32:243–252Google Scholar
  45. Seiwert B, Giavalisco P, Willmitzer L (2010) Advanced mass spectrometry methods for analysis of lipids from photosynthetic organisms. In: Wada M, Murata N (eds) Lipids in photosynthesis: essential and regulatory functions. Springer, Dordrecht, pp 445–461Google Scholar
  46. Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the U.S. Department of Energy’s Aquatic Species Program: biodiesel from algae by the National Renewable Energy Laboratory. Report NREL/TP-580-24190, National Renewable Energy Laboratory, GoldenCrossRefGoogle Scholar
  47. Stanier RY, Kunisawa R, Mandel M, Cohen­Bazire G (1971) Purification and properties of unicellular blue­green algae (order Chroococcales). Bacteriol Rev 35:171–205PubMedCentralPubMedGoogle Scholar
  48. Vieler A, Wilhelm C, Goss R, Suß R, Schiller J (2007) The lipid composition of the unicellular green alga Chlamydomonas reinhardtii and the diatom Cyclotella meneghiniana investigated by MALDI-TOF MS and TLC. Chem Phys Lipids 150:143–155CrossRefPubMedGoogle Scholar
  49. Vogel G, Eichenberger W (1992) Betaine lipids in lower plants. Biosynthesis of DGTS and DGTA in Ochromonas danica (Chrysophyceae) and the possible role of DGTS in lipid metabolism. Plant Cell Physiol 33:427–436Google Scholar
  50. Xue H, Chen X, Li G (2007) Involvement of phospholipid signaling in plant growth and hormone effects. Curr Opin Plant Biol 10:483–489CrossRefPubMedGoogle Scholar
  51. Yu WL, William A, Schoepp NG, Hannon MJ, Mayfield SP, Burkart MD (2011) Modifications of the metabolic pathways of lipid and triacylglycerol production in microalgae. Microb Cell Fact 10:91–101CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Durlubh Kumar Sharma
    • 1
  • Kshipra Gautam
    • 1
    Email author
  • Jessica Jueppner
    • 2
  • Patrick Giavalisco
    • 2
  • Liisa Rihko-Struckmann
    • 3
  • Ashwani Pareek
    • 4
  • Kai Sundmacher
    • 3
  1. 1.Centre for Energy StudiesIndian Institute of TechnologyNew DelhiIndia
  2. 2.Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
  3. 3.Max Planck Institute for the Dynamics of Complex Technical SystemsMagdeburgGermany
  4. 4.School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations