Journal of Applied Phycology

, Volume 27, Issue 2, pp 865–878 | Cite as

Morphological, biochemical, and phylogenetic assessments of eight Botryococcus terribilis strains collected from freshwaters of Transylvania

  • Adriana Hegedűs
  • Aurel Mocan
  • Lucian Barbu-Tudoran
  • Cristian Coman
  • Bogdan Drugă
  • Cosmin Sicora
  • Nicolaie Dragoș


Botryococcus braunii is a green unicellular microalga with a unique potential to produce large quantities of hydrocarbons similar to fossil fuel. Up to now, B. braunii is the most studied species of the Botryococcus genus. The taxonomic affiliation of eight different strains of the genus Botryococcus collected from freshwaters of Transylvania was investigated based on their morphological characteristics and molecular profile using small subunit (SSU) ribosomal RNA (rRNA) genes and internal transcribed spacer 2 (ITS2) sequence-structure analysis. The phylogenetic inference using ITS2 sequence-structure molecular marker, an approach addressed for the first time in the issue of Botryococcus genus phylogeny, generated similar results with the 18S rRNA gene based analysis. In both phylogenetic trees we constructed, the sequences of our strains formed an independent cluster within the B-race clade. Based on the phylogenetic data and the presence of long mucilaginous processes which emerged from the periphery of the colonies, we established the affiliation of our strains to Botryococcus terribilis species. Detailed analyses regarding the growth performances, ultrastructural characteristics, and hydrocarbon and fatty acid profiles were also included in our study. The micrographs obtained in scanning electron, transmission electron, and light microscopies showed a high degree of similarity to other strains affiliated to the B chemical race. Also, gas chromatography–mass spectrometry assay showed for the first time the ability of B. terribilis strains to synthesize C30–C32 botryococcenes, which are known to be specific to the B-type Botryococcus strains.


Botryococcus terribilis Botryococcenes 18S rDNA ITS2 

Supplementary material

10811_2014_387_MOESM1_ESM.pdf (37 kb)
Online Resource 1 (PDF 37 kb)


  1. Allen MM, Stanier RY (1968) Growth and divisions of some unicellular blue-green algae on plates. J Gen Microbiol 51:199–202CrossRefPubMedGoogle Scholar
  2. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenyloxidase in Beta vulgaris. Plant Physiol 24:1–15CrossRefPubMedCentralPubMedGoogle Scholar
  3. Audino M, Grice K, Alexander R, Kagi RI (2002) Macrocyclic alkanes in crude oil from the algaenan of Botryococcus braunii. Org Geochem 33:979–984CrossRefGoogle Scholar
  4. Baba M, Shiraima Y (2013) Biosynthesis of lipids and hydrocarbons from algae. In: Dubinsky Z (ed) Photosynthesis, 1st edn. InTech, Rijeka, p 336Google Scholar
  5. Ben-Amotz A, Tornabene TG, Thomas WH (1985) Chemical profile of selected species of microalgae with emphasis on lipids. J Phycol 21:72–81CrossRefGoogle Scholar
  6. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2008) GenBank. Nucleic Acids Res 36:D25–D30CrossRefPubMedCentralPubMedGoogle Scholar
  7. Berkaloff C, Coute A, Casadevall E, Rousseau B, Metzger P, Chirac C (1984) Variability of cell wall structure and hydrocarbon type in different strains of Botryococcus braunii. J Phycol 20:377–389CrossRefGoogle Scholar
  8. Blackburn KB, Temperley BN (1936): A reinvestigation of the alga Botryococcus braunii Kützing In: Robert Grant & Son (ed) Botryococcus the algal coals, Transactions of the Royal Society of Edinburgh, EdinburghGoogle Scholar
  9. Bligh EG, Dyer WJ (1959) A rapid method of extraction and purification of total lipids. Can J Biochem Phys 37:911–917CrossRefGoogle Scholar
  10. Britton G, Liaaen-Jensen S, Pfander H (1995) Carotenoids. Volume 1A: isolation and analysis. BirkhäuserVerlag, Basel, Boston, BerlinGoogle Scholar
  11. Casadevall E, Metzger P, Puech M-P (1984) Biosynthesis of triterpenoid hydrocarbons in the alga Botryococcusbraunii. Tetrahedron Lett 25:4123–4126CrossRefGoogle Scholar
  12. Casadevall E, Dif D, Largeau C, Gudin C, Chaumont D, Desanti O (1985) Studies on batch and continuous cultures of Botryococcus braunii: hydrocarbon production in relation to physiological state, cell ultrastructure, and phosphate nutrition. Biotechnol Bioeng 27:286–295CrossRefPubMedGoogle Scholar
  13. Christie WW (1993) Advances in lipid methodology—two. Oily Press, DundeeGoogle Scholar
  14. Comas GA (1996) Las Chlorococcalesdulciacuícolas de Cuba. Bibliotheca Phycologica, 99, J. Cramer, Stuttgart. 192 ppGoogle Scholar
  15. Dayananda C, Sarada R, Shamala TR, Ravishankar GA (2006) Influence of nitrogen sources on growth, hydrocarbon and fatty acid production by Botryococcus braunii. Asian J Plant Sci 5:799–804CrossRefGoogle Scholar
  16. de Queiroz Mendes MC, Comas González AA, Vieira Moreno ML, Pereira Figueira C, de Castro Nunes JM (2012) Morphological and ultrastructure features of a strain of Botryococcus terribilis (Trebouxiophyceae) from Brazil. J Phycol 48:1099–1106CrossRefGoogle Scholar
  17. Dragoș N, Péterfi LȘ, Momeu L, Popescu C (1997) An introduction to the algae and the culture collection of algae at the Institute of Biological Research Cluj-Napoca. Cluj University Press, Cluj-NapocaGoogle Scholar
  18. Eroglu E, Melis A (2010) Extracellular terpenoid hydrocarbon extraction and quantitation from the green microalgae Botryococcus braunii var. Showa Bioresource Technol 101:2359–2366CrossRefGoogle Scholar
  19. Eroglu E, Okada S, Melis A (2011) Hydrocarbon productivities in different Botryococcus strains: comparative methods in product quantification. J Appl Phycol 23:763–775CrossRefPubMedCentralPubMedGoogle Scholar
  20. Fanés Treviño I, Sánchez-Castillo P, Comas González A (2009) Contribution to the taxonomic study of the family Botryococcaceae (Trebouxiophyceae, Chlorophyta) in southern Spain. Cryptogamie Algol 30:17–30Google Scholar
  21. Fanés Treviño I, Sánchez-Castillo P, Comas González A (2010) Nuevascitas de algas verdes Cocales en la PenínsulaIbérica. Bol R SocEspHist Nat Sec Biol 104:5–24Google Scholar
  22. Friedrich J, Dandekar T, Wolf M, Müller T (2005) ProfDist: a tool for the construction of large phylogenetic trees based on profile distances. Bioinformatics 21:2108–2109CrossRefPubMedGoogle Scholar
  23. Ghasemi Y, Rasoul-Amini S, Naseri AT, Montazeri-Najafabady N, Mobasher MA, Dabbagh F (2012) Microalgae biofuel potentials (Review). Appl Biochem Microbiol 48:126–144CrossRefGoogle Scholar
  24. Goodwin TW (1976) Chemistry and biochemistry of plant pigments, 2nd eds. Academic Press, New-YorkGoogle Scholar
  25. Guillard RRL (1973) Division rates. In: Stein JR (ed) Handbook of Phycological Methods, Culture Methods and Growth Measurements. Cambridge University Press, Cambridge, pp 289–312Google Scholar
  26. Guindon S, Gascuel O (2003) A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst Biol 52:696–704CrossRefPubMedGoogle Scholar
  27. Hillen LW, Pollard G, Wake LV, White N (1982) Hydrocracking of the oil of Botryococcus braunii to transport fuels. Biotechnol Bioeng 24:193–205CrossRefPubMedGoogle Scholar
  28. Hindák F (1991) Botryococcus canadensis, spec. nova (Chlorophyceae, Chlorococcales). Arch Protistenkd 139:55–58CrossRefGoogle Scholar
  29. Kalendar R, Lee D, Schulman AH (2011) Java web tools for PCR, in silico PCR, and oligonucleotide assembly and analysis. Genomics 98:137–144CrossRefPubMedGoogle Scholar
  30. Kawachi M, Tanoi T, Demura M, Kaya K, Watanabe MM (2012) Relationship between hydrocarbons and molecular phylogeny of Botryococcus braunii. Algal Res 1:114–119CrossRefGoogle Scholar
  31. Koetschan C, Förster F, Keller A, Schleicher T, Ruderisch B, Schwarz R, Müller T, Wolf M, Schultz J (2010) The ITS2 database III: homology modelling RNA structure for molecular systematics. Nucleic Acids Res 38:D275–D279CrossRefPubMedCentralPubMedGoogle Scholar
  32. Koetschan C, Hackl T, Müller T, Wolf M, Förster F, Schultz J (2012) ITS2 database IV: interactive taxon sampling for internal transcribed spacer 2 based phylogenies. Mol Phylogenet Evol 63:585–588CrossRefPubMedGoogle Scholar
  33. Komárek J, Marvan P (1992) Morphological differences in natural populations of Botryococcus (Chlorophyceae). Arch Protistenkd 141:65–100CrossRefGoogle Scholar
  34. Komárková J (1991) Life cycle of Botryococcus protuberans W. et G. S. West in natural conditions. Arch Protistenkd 139:59–68CrossRefGoogle Scholar
  35. Kützing FT (1849) Species algarum. FA Brockhaus, Lipsiae [Leipzig]Google Scholar
  36. Lanave C, Preparata G, Saccone C, Serio G (1984) A new method for calculating evolutionary substitution rates. J Mol Evol 20:86–93CrossRefPubMedGoogle Scholar
  37. Largeau C, Casadevall E, Berkaloff C (1980a) The biosynthesis of the long-chain hydrocarbon in the green alga Botryococcus braunii. Phytochemistry 19:1081–1085CrossRefGoogle Scholar
  38. Largeau C, Casadevall E, Berkaloff C, Dhamelincourt P (1980b) Sites of accumulations and composition of hydrocarbons in Botryococcus braunii. Phytochemistry 19:1043–1051CrossRefGoogle Scholar
  39. Li Y, Qin JG (2005) Comparison of growth and lipid content in three Botryococcus braunii strains. J Appl Phycol 17:551–556CrossRefGoogle Scholar
  40. Melis A (2013) Carbon partitioning in photosynthesis. Curr Opin ChemBiol 17:1–4CrossRefGoogle Scholar
  41. Merget B, Wolf M (2010) A molecular phylogeny of Hypnales (Bryophyta) inferred from ITS2 sequence-structure data. BMC Res Notes 3:320CrossRefPubMedCentralPubMedGoogle Scholar
  42. Metzger P, Casadevall E (1987) Lycopadiene, a tetraterpenoid hydrocarbon from new strains of the green alga Botryococcus braunii. Tetrahedron Lett 28:3931–3934CrossRefGoogle Scholar
  43. Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496CrossRefPubMedGoogle Scholar
  44. Metzger P, Berkaloff C, Casadevall E, Coute A (1985a) Alkadiene- and botriococcene- producing races of wild strains of Botryococcus braunii. Phytochemistry 24:2305–2312CrossRefGoogle Scholar
  45. Metzger P, Casadevall E, Pouet MJ, Pouet Y (1985b) Structures of some botryococcenes: branched hydrocarbons from the B-race of the green alga Botryococcus braunii. Phytochemistry 24:2995–3002CrossRefGoogle Scholar
  46. Metzger P, Templier J, Largeau C, Casadevall E (1986) A n-alkatriene and some n-alkadienes from the A race of the green alga Botryococcus braunii. Phytochemistry 25:1869–1872CrossRefGoogle Scholar
  47. Metzger P, David M, Casadevall E (1987) Biosynthesis of triterpenoid hydrocarbons in the B-race of the green alga Botryococcus braunii. Sites of production and nature of the methylating agent. Phyto chemistry 26:129–134Google Scholar
  48. Metzger P, Villarreal-Rosales E, Casadevall E, Couté A (1989) Hydrocarbons, aldehydes and triacylglycerols in some strains of the A race of the green alga Botryococcus braunii. Phytochemistry 28:2349–2353CrossRefGoogle Scholar
  49. Metzger P, Pouet Y, Bischoff R, Casadevall E (1993) An aliphatic polyaldehyde from Botryococcus braunii (A race). Phytochemistry 32:875–883CrossRefGoogle Scholar
  50. Moldowan JM, Seifert WK (1980) First discovery of botryococcenes in petroleum. J Chem Soc Chem Comm 19:912–914Google Scholar
  51. Müller T, Rahmann S, Dandekar T, Wolf M (2004) Accurate and robust phylogeny estimation based on profile distances: a study of the Chlorophyceae (Chlorophyta). BMC Evol Biol 4:20CrossRefPubMedCentralPubMedGoogle Scholar
  52. Nascimento IA, Marques SSI, Cabanele ITD, Pereira SA, Druzian JI, de Souza CO, Vich DV, Carvalho GC, Nascimento MA (2013) Screening microalage strains from biodisel production: lipid productivity and estimation of fuel quality based of fatty acids profiles as selective criteria. Bioenerg Res 6:1–13CrossRefGoogle Scholar
  53. Nogueira IS, Oliveira JE (2009) Chlorococcales e Ulothricales de hábito colonial de quatrolagosartificiais do município de Goiânia—GO. Iheringia, Porto Alegre 64:123–143Google Scholar
  54. Okada S, Murakami M, Yamaguchi K (1995) Hydrocarbon composition of newly isolated strains of the green microalga Botryococcus braunii. J Appl Phycol 7:555–559CrossRefGoogle Scholar
  55. Okada S, Devarenne TP, Murakami M, Abe H, Chappell J (2004) Characterization of botryococcene synthase enzyme activity, a squalene synthase-like activity from the green microalga Botryococcus braunii, Race B. Arch Biochem Biophys 422:110–118CrossRefPubMedGoogle Scholar
  56. Olsson S, Buchbender V, Enroth J, Huttunen S, Hedenäs L, Quandt D (2009) Evolution of the Neckeraceae (Bryophyta) resolving the backbone phylogeny. Syst Biodivers 7:419–432CrossRefGoogle Scholar
  57. Page R (1996) TreeView: An application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  58. Plain N, Largeau C, Derenne S, Couté A (1993) Variabilité morphologique de Botryococcus braunii (Chlorococcales, Chlorophyta): corrélations avec les conditions de croissanceet la teneur en lipides. Phycologia 32:259–265CrossRefGoogle Scholar
  59. Poole CF (2003) The essence of chromatography. Elsevier, AmsterdamGoogle Scholar
  60. Posada D (2003) jModelTest: Phylogenetic model averaging. Mol Biol Evol 25:1253–1256CrossRefGoogle Scholar
  61. Rahmann S, Müller T, Dandekar T, Wolf M (2006) Efficient and robust analysis of large phylogenetic datasets. In: Hsu H-H (ed) Advanced Data Mining Technologies in Bioinformatics. Idea Group Inc., Hershey, pp 104–117CrossRefGoogle Scholar
  62. Rao AR, Dayananda C, Sarada R, Shamala TR, Ravishankar GA (2007) Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresource Technol 98:560–564CrossRefGoogle Scholar
  63. Rodrigues LL, Sant’Anna CL, Tucci A (2010) Chlorophyceae das represas Billings (BraçoTaquacetuba) e Guarapiranga, SP, Brasil. Rev Bras Bot 33:247–264CrossRefGoogle Scholar
  64. Sahu A, Pancha I, Jain D, Paliwal C, Gosh T, Patidar S, Bhattachrya S, Mishra S (2013) Fatty acids as biomarkers of microalgae. Phytochemistry 89:53–58CrossRefPubMedGoogle Scholar
  65. Sawayama S, Inoue S, Yokoyama S (1995) Phylogenetic position of Botryococcus braunii (Chlorophyceae) based on small subunit ribosomal RNA sequence data. J Phycol 31:419–420CrossRefGoogle Scholar
  66. Schultz J, Maisel S, Gerlach D, Müler T, Wolf M (2005) A common core of secondary structure of the internal transcribed spacer 2 (ITS2) throughout Eukaryota. RNA 11:361–364CrossRefPubMedCentralPubMedGoogle Scholar
  67. Schultz J, Müller T, Achtzinger M, Seibel PN, Dandekar T, Wolf M (2006) The internal transcribed spacer 2 database—a web server for (not only) low level phylogenetic analyses. Nucleic Acids Res 34:W704–W707CrossRefPubMedCentralPubMedGoogle Scholar
  68. Seibel PN, Müller T, Dandekar T, Schultz J (2006) Wolf M (2006) 4SALE—a tool for synchronous RNA sequence and secondary structure alignment and editing. BMC Bioinformatics 7:498CrossRefPubMedCentralPubMedGoogle Scholar
  69. Seibel PN, Müller T, Dandekar T (2008) Wolf M (2008) Synchronous visual analysis and editing of RNA sequence and secondary structure alignments using 4SALE. BMC Res Notes 1:91CrossRefPubMedCentralPubMedGoogle Scholar
  70. Selig C, Wolf M, Müller T, Dandekar T, Schultz J (2008) The ITS2 database II: homology modelling RNA structure for molecular systematics. Nucleic Acids Res 36:D377–D380CrossRefPubMedCentralPubMedGoogle Scholar
  71. Senousy HH, Beakes GW, Hack E (2004) Phylogenetic placement of Botryococcus braunii (Trebouxiophyceae) and Botryococcus sudeticus isolate UTEX 2629 (Chlorophyceae). J Phycol 40:412–423CrossRefGoogle Scholar
  72. Summons RE, Metzger P, Largeau C, Murray AP, Hope JM (2002) Polymethyl squalenes from Botryococcus braunii in lacustrine sediments and crude oils. Org Geochem 33:99–109Google Scholar
  73. Sutherland IW, Wilkinson JF (1971) Chemical extraction methods from microbial cells. In: De Worris JR, Ribbons DW (eds) Methods of Microbiology volume 5B. Acad Press, London, pp 350–356Google Scholar
  74. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526PubMedGoogle Scholar
  75. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6. Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedCentralPubMedGoogle Scholar
  76. Wake LV, Hillen LW (1980) Study of “bloom” of the oil-rich alga Botryococcus braunii in the Darwin river reservoir. Biotechnol Bioeng 22:1637–1656CrossRefGoogle Scholar
  77. Wake LV, Hillen LW (1981) Nature and hydrocarbon content of blooms of the alga Botryococcus braunii occurring in Australian freshwater lakes. Aust J Mar Freshwat Res 32:353–367CrossRefGoogle Scholar
  78. Watanabe MM, Tanabe Y (2013) Biology and industrial potential of Botryococcus braunii. In: Richmond A, Hu Q (eds) Handbook of Microalgal Culture, vol 2nd. Wiley-Blackwell, Oxford, pp 369–387CrossRefGoogle Scholar
  79. Watanabe MM, Kawachi M, Hiroki M, Kasai F (2000) NIES-Collection List of Strains. Microalgae and Protozoa. Microbial Culture Collections, 6thedn. National Institute for Environmental Studies, Tsukuba, p 159Google Scholar
  80. Weiss TL, Johnston JS, Fujisawa K, Sumimoto K, Okada S, Chappell J, Devarenne TP (2010) Phylogenetic placement, genome size, and GC content of the liquid-hydrocarbon-producing green microalga Botryococcus braunii strain Berkeley (Showa) (Chlorophyta). J Phycol 46:534–540CrossRefGoogle Scholar
  81. Weiss TL, Johnston JS, Fujisawa K, Okada S, Devarenne TP (2011) Genome size and phylogenetic analysis of the A and L races of Botryococcus braunii. J Appl Phycol 23:833–839CrossRefGoogle Scholar
  82. Weiss TL, Roth R, Goodson C, Vitha S, Black I, Azadi P, Rusch J, Holzenburg A, Devarenne TP, Goodenough U (2012) Colony organization in the green alga Botryococcus braunii (race B) is specified by a complex extracellular matrix. Eukaryot Cell 11:1424–1440CrossRefPubMedCentralPubMedGoogle Scholar
  83. Wolf FR, Cox ER (1981) Ultrastructure of active and resting colonies of Botryococcus braunii (Chlorophyceae). J Phycol 17:395–405CrossRefGoogle Scholar
  84. Wolf FR, Nonomura AM, Basshan JA (1985) Growth and branched hydrocarbon production in a strain of Botryococcus braunii (Chlorophyta). J Phycol 21:388–396CrossRefGoogle Scholar
  85. Wolf M, Ruderisch B, Dandekar T, Müller T (2008) ProfdistS: (profile-) distance based phylogeny on sequence-structure alignments. Bioinformatics 24:2401–2402CrossRefPubMedGoogle Scholar
  86. Yeesang C, Cheirsilp B (2011) Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwaters sources in Thailand. Bioresource Technol 102:3034–3040CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Adriana Hegedűs
    • 1
  • Aurel Mocan
    • 2
  • Lucian Barbu-Tudoran
    • 3
  • Cristian Coman
    • 1
  • Bogdan Drugă
    • 1
  • Cosmin Sicora
    • 4
  • Nicolaie Dragoș
    • 3
  1. 1.Institute of Biological ResearchCluj-NapocaRomania
  2. 2.Institute of Public Health “Professor Iuliu Moldovan”Cluj-NapocaRomania
  3. 3.Faculty of Biology and GeologyBabeş-Bolyai UniversityCluj-NapocaRomania
  4. 4.Biological Research CenterJibouRomania

Personalised recommendations