Journal of Applied Phycology

, Volume 27, Issue 2, pp 639–647 | Cite as

Life cycle assessment: heterotrophic cultivation of thraustochytrids for biodiesel production

  • Kim Jye Lee Chang
  • Lucas Rye
  • Graeme A. Dunstan
  • Tim Grant
  • Anthony Koutoulis
  • Peter D. Nichols
  • Susan I. Blackburn


This study provides a life cycle assessment of the energy balance and the potential greenhouse gas impacts of heterotrophic microalgal-derived biodiesel estimated from the upstream biomass production to the downstream emissions from biodiesel combustion. Heterotrophic microalgae can be cultivated using a by-product from biodiesel production such as glycerol as a carbon source. The oils within the algal biomass can then be converted to biodiesel using transesterification or hydroprocessing techniques. This approach may provide a solution to the limited availability of biomass feedstock for production of biorefined transportation fuels. The life cycle assessment of a virtual production facility, modeled on experimental yield data, has demonstrated that cultivation of heterotrophic microalgae for the production of biodiesel is comparable, in terms of greenhouse gas emissions and energy usage (90 g CO2e MJ−1), to fossil diesel (85 g CO2e MJ−1). The life cycle assessment identified that improvement in cultivation conditions, in particular the bioreactor energy inputs and microalgae yield, will be critical in developing a sustainable production system. Our research shows the potential of heterotrophic microalgae to provide Australia’s transportation fleet with a secure, environmentally sustainable alternative fuel.


Life cycle assessment Heterotrophic Thraustochytrids Biodiesel 


  1. Athanasoulia E, Melidis P, Aivasidis A (2014) Co-digestion of sewage sludge and crude glycerol from biodiesel production. Renew Energy 62:73–78CrossRefGoogle Scholar
  2. BAA (2013) Biodiesel production facilities in Australia, current as at 1 December 2013, Biofuels Association of Australia <> Accessed 20 May 2014
  3. Barclay W, Weaver C, Metz J, Hansen J (2010) Development of a docosahexaenoic acid production technology using Schizochytrium: historical perspective and update. In: Cohen Z, Ratledge C (eds) Single Cell Oils - Microbial and Algal Oils (2nd Edition). AOCS Press, Champaign, pp 75–96Google Scholar
  4. Beer T, Grant T., Morgan G, Lapszewicz J, Anyon P, Edwards J, Williams D (2001). Comparison of transport fuels. Final report (EV45A/2/F3C) to the Australian greenhouse office on the stage 2.of life- cycle emissions analysis of alternative fuels for heavy vehicles. Aspendale, Vic (AU)Google Scholar
  5. Benemann JR (2000) Hydrogen production by microalgae. J Appl Phycol 12:291–300CrossRefGoogle Scholar
  6. De Boer K, Moheimani NR, Borowitzka MA, Bahri PA (2012) Extraction and conversion pathways for microalgae to biodiesel: a review focused on energy consumption. J Appl Phycol 24:1681–1698Google Scholar
  7. Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577CrossRefGoogle Scholar
  8. Brown R (2007) Biodiesel co-product markets in Wyoming for Wyoming Department of Agriculture. Lakewood, CO: International Center for Appropriate & Sustainable Technology. 20 May 2014
  9. Cavalier-Smith T, Allsopp MTEP, Chao EE (1994) Thraustochytrids are chromists, not fungi: 18 s rRNA signatures of Heterokonta. Phil Trans R Soc London B 346:387–397CrossRefGoogle Scholar
  10. Collet P, Hélias A, Lardon L, Ras M, Goy RA, Steyer JP (2011) Life-cycle assessment of microalgae culture coupled to biogas production. Bioresour Technol 102:207–214Google Scholar
  11. Danaei G, Ding EL, Mozaffarian D, Taylor B, Jr R, Murray CJL, Ezzati M (2009) The preventable causes of death in the United States: comparative risk assessment of dietary, lifestyle, and metabolic risk factors. PLoS Med 6(4):e1000058CrossRefPubMedCentralPubMedGoogle Scholar
  12. Dasari MA, Kiatsimkul PP, Sutterlin WR, Suppes GJ (2005) Low-pressure hydrogenolysis of glycerol to propylene glycol. Appl Catal A: Gen 281(1):225–231Google Scholar
  13. Dobes L (1994) Alternative fuels in Australian transport. Bureau of Transport and Communications, Economics, CanberraGoogle Scholar
  14. Esper B, Badura A, Rögner M (2006) Photosynthesis as a power supply for (bio-) hydrogen production. Trends Plant Sci 11:543–549CrossRefPubMedGoogle Scholar
  15. Fisher L, Nicholls D, Sanderson K (2007) Production of biodiesel. WIPO Patent No. 2008067605Google Scholar
  16. Forsyth JS, Carlson SE (2001) Long-chain polyunsaturated fatty acids in infant nutrition: effects on infant development. Curr Opin Clin Nutr Metab Care 4:123–126CrossRefPubMedGoogle Scholar
  17. Grant T, Beer T, Campbell PK, Batten D (2008) Life cycle assessment of environmental outcomes and greenhouse gas emissions from biofuels production in Western Australia. Department of Agriculture and Food Government of Western Australia. CSIRO, Western AustraliaGoogle Scholar
  18. Holland FA, Chapman FS (1966) Liquid mixing and processing in stirred tanks. Reinhold Pub. Corp, New YorkGoogle Scholar
  19. Hong WK, Yu A, Heo SY, Oh BR, Kim CH, Sohn JH, Yang JW, Kondo A, Seo JW (2013) Production of lipids containing high levels of docosahexaenoic acid from empty palm fruit bunches by Aurantiochytrium sp. KRS101. Bioproc Biosyst Eng 36:959–963CrossRefGoogle Scholar
  20. Hossain AK, Davies PA (2010) Plant oils as fuels for compression ignition engines: A technical review and life-cycle analysis. Renew Energy 35:1–13CrossRefGoogle Scholar
  21. Huntley M, Redalje D (2007) CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig Adapt Strateg Glob Chang 12:573–608CrossRefGoogle Scholar
  22. Jain R, Raghukumar S, Sambaiah K, Kumon Y, Nakahara T (2007) Docosahexaenoic acid accumulation in thraustochytrids: search for the rationale. Mar Biol 151:1657–1664CrossRefGoogle Scholar
  23. Johnson DT, Taconi KA (2007) The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production. Environ Prog 26:338–348CrossRefGoogle Scholar
  24. Johnson MB, Wen Z (2009) Production of biodiesel fuel from the microalga Schizochytrium limacinum by direct transesterification of algal biomass. Energy Fuel 23:5179–5183CrossRefGoogle Scholar
  25. Knothe G (2007) Some aspects of biodiesel oxidative stability. Fuel Process Technol 88:669–677CrossRefGoogle Scholar
  26. Knothe G, Sharp CA, Ryan TW III (2006) Exhaust emissions of biodiesel, petrodiesel, neat methyl esters, and alkanes in a new technology engine. Energy Fuel 20:403–408CrossRefGoogle Scholar
  27. Lammers PJ, Kerr BJ, Honeyman MS, Stalder K, Dozier WA, Weber TE, Kidd MT, Bregendahl K (2008) Nitrogen-corrected apparent metabolizable energy value of crude glycerol for laying hens. Poult Sci 87:104–107CrossRefPubMedGoogle Scholar
  28. Leander CA, Porter D, Leander BS (2004) Comparative morphology and molecular phylogeny of aplanochytrids (Labyrinthulomycota). Eur J Protistol 40:317–328CrossRefGoogle Scholar
  29. Lee Chang KJ, Mansour MP, Dunstan GA, Blackburn SI, Koutoulis A, Nichols PD (2011) Odd-chain polyunsaturated fatty acids in thraustochytrids. Phytochemistry 72:1460–1465CrossRefGoogle Scholar
  30. Lee Chang KJ, Dunstan GA, Abell G, Clementson L, Blackburn S, Nichols PD, Koutoulis A (2012) Biodiscovery of new Australian thraustochytrids for production of biodiesel and long-chain omega-3 oils. Appl Microbiol Biotechnol 93:2215–2231CrossRefPubMedGoogle Scholar
  31. Lee Chang KJ, Dumsday G, Nichols P, Dunstan G, Blackburn S, Koutoulis A (2013) High cell density cultivation of a novel Aurantiochytrium sp. strain TC 20 in a fed-batch system using glycerol to produce feedstock for biodiesel and omega-3 oils. Appl Microbiol Biotechnol:1-12Google Scholar
  32. Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrog Energy 29:173–185CrossRefGoogle Scholar
  33. Lewis TE, Nichols PD, McMeekin TA (1999) The biological potential of thraustochytrids. Mar Biotechnol 1:580–587CrossRefPubMedGoogle Scholar
  34. Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae. Biotechnol Prog 24:815–820PubMedGoogle Scholar
  35. Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31:1043–1049CrossRefPubMedGoogle Scholar
  36. Maas PAY, Kleinschuster SJ, Dykstra MJ, Smolowitz R, Parent J (1999) Molecular characterization of QPX (Quahog Parasite Unknown), a pathogen of Mercenaria mercenaria. J Shellfish Res 18:561–567Google Scholar
  37. Mendes A, da Silva TL, Reis A (2007) DHA concentration and purification from the marine heterotrophic microalga Crypthecodinium cohnii CCMP 316 by winterization and urea complexation. Food Technol Biotechnol 45:38Google Scholar
  38. Monyem A, Canakci M, Van Gerpen JH (2000) Investigation of biodiesel thermal stability under simulated in-use conditions. Appl Eng Agric 16:373–378CrossRefGoogle Scholar
  39. Mozaffarian D, Rimm EB (2006) Fish intake, contaminants, and human health: Evaluating the risks and the benefits. JAMA 296:1885–1899CrossRefPubMedGoogle Scholar
  40. Oswald WJ, Golueke CG (1960) Biological transformation of solar energy. Adv Appl Microbiol 11:223–242CrossRefGoogle Scholar
  41. Passell H, Dhaliwal H, Reno M, WU B, Ben Amotz A, Ivry E, Gay M, Czartoski T, Laurin L, Ayer N (2013) Algae biodiesel life cycle assessment using current commercial data. J Environ Manag 129:103–111CrossRefGoogle Scholar
  42. Penner JE, Lister D, Griggs DJ, Dokken DJ, McFarland M (1999) Aviation and the global atmosphere: a special report of the Intergovernmental Panel on Climate Change. Cambridge University PressGoogle Scholar
  43. Peterka A (2013) Biofuels: Energy companies buckle up in hope of green aviation takeoff. Environmental and Energy Publishing database Accessed 20 May 2014
  44. Pluske J (2007) Evaluation of glycerine as co-product of biodiesel production for the pig industry. Pork Co-operative Research Center, 1, 1-47 Accessed 20 Apr 2014
  45. Porter D (1990) Phylum Labyrinthulomycota. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of Protoctista. Jones and Bartlett, Boston, pp 388–398Google Scholar
  46. Pyle DJ, Garcia RA, Wen Z (2008) Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition. J Agric Food Chem 56:3933–3939CrossRefPubMedGoogle Scholar
  47. Quispe CAG, Coronado CJR, Carvalho JRJA (2013) Glycerol: production, consumption, prices, characterization and new trends in combustion. Renew Sustain Energy Rev 27:475–493CrossRefGoogle Scholar
  48. Raghukumar S (2002) Ecology of the marine portists, the Labyrinthulomycetes (thraustochytrids and labyrinthulids). Eur J Protistol 38:127–145CrossRefGoogle Scholar
  49. Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–815CrossRefPubMedGoogle Scholar
  50. Rye L, Blakey S, Wilson CW (2010) Sustainability of supply or the planet: a review of potential drop-in alternative aviation fuels. Energy Environ Sci 3:17–27CrossRefGoogle Scholar
  51. Samarasinghe N, Fernando S, Lacey R, Faulkner WB (2012) Algal cell rupture using high pressure homogenization as a prelude to oil extraction. Renew Energy 48:300–308CrossRefGoogle Scholar
  52. Sheehan J, Camobreco V, Duffield J, Graboski M, Shapouri H (1998a) Life cycle inventory of biodiesel and petroleum diesel for use in an urban bus. Final report. National Renewable Energy Lab., Golden, Colorado (USA)Google Scholar
  53. Sheehan J, Dunahay T, Benemann J, Roessler P (1998b) Look back at the U.S. Department of Energy’s Aquatic Species Program: biodiesel from algae; close-out report. National Renewable Energy Lab., US Department of Energy. Golden, CO. (USA)Google Scholar
  54. Stephens E, Ross IL, King Z, Mussgnug JH, Kruse O, Posten C, Borowitzka MA, Hankamer B (2010) An economic and technical evaluation of microalgal biofuels. Nat Biotechnol 28:126–128CrossRefPubMedGoogle Scholar
  55. Stratton RW, Wong HM, Hileman JI (2011) Quantifying variability in life cycle greenhouse gas inventories of alternative middle distillate transportation fuels. Environ Sci Technol 45:4637–4644CrossRefPubMedGoogle Scholar
  56. US DOE (2010) National algal biofuels technology roadmap. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program/ Accessed 18 Mar 2011
  57. Wahlen BD, Morgan MR, McCurdy AT, Willis RM, Morgan MD, Dye DJ, Bugbee B, Wood BD, Seefeldt LC (2013) Biodiesel from microalgae, yeast, and bacteria: engine performance and exhaust emissions. Energy Fuel 27:220–228CrossRefGoogle Scholar
  58. Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796–799CrossRefPubMedGoogle Scholar
  59. Yan D, Lu Y, Chen Y-F, Wu Q (2011) Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-saving biodiesel production. Bioresour Technol 102:6487–6493CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Kim Jye Lee Chang
    • 1
    • 2
    • 5
  • Lucas Rye
    • 1
  • Graeme A. Dunstan
    • 1
  • Tim Grant
    • 3
  • Anthony Koutoulis
    • 5
  • Peter D. Nichols
    • 1
    • 4
  • Susan I. Blackburn
    • 1
    • 2
  1. 1.CSIRO Marine and Atmospheric ResearchHobartAustralia
  2. 2.CSIRO Intelligent Processing Transformational Capability PlatformHobartAustralia
  3. 3.Life Cycle StrategiesMelbourneAustralia
  4. 4.Food Future National Research FlagshipCSIROHobartAustralia
  5. 5.School of Biological ScienceUniversity of TasmaniaHobartAustralia

Personalised recommendations