Journal of Applied Phycology

, Volume 27, Issue 1, pp 275–284 | Cite as

Allelopathic interactions between microcystin-producing and non-microcystin-producing cyanobacteria and green microalgae: implications for microcystins production

  • Maria do Carmo Bittencourt-OliveiraEmail author
  • Mathias Ahii Chia
  • Helton Soriano Bezerra de Oliveira
  • Micheline Kézia Cordeiro Araújo
  • Renato José Reis Molica
  • Carlos Tadeu Santos Dias


Most mixed culture studies on the allelopathic interactions between toxic and nontoxic cyanobacteria with phytoplankton species rarely investigate the role of microcystins (MC) production and regulation in the course of the studies. This study investigated the interactions between intact cells of toxic (Microcystis aeruginosa (Kützing) Kützing) and nontoxic (Microcystis panniformis Komárek et al.) cyanobacteria with those of green algae (Monoraphidium convolutum (Corda) Komárková-Legnerová and Scenedesmus acuminatus (Largerheim) Chodat) as well as the effects of their respective crude extracts (5 and 10 μg.L−1) on their growth under controlled conditions. M. aeruginosa and M. panniformis were able to significantly (p < 0.05) inhibit the growth of the green algae with M. convolutum being the most affected. The green alga S. acuminatus in return was able to inhibit the growth of the both cyanobacteria. In response to the presence of a competing species in the growth medium, M. aeruginosa significantly increased its MC production per cell with the progression of the experiment, having the highest concentration at the end of the experiment. On the other hand, the extracts of the cyanobacteria had no significant inhibitory effect on the green algal strains investigated, while those of the green algae also had significant inhibitory effect on the growth of M. aeruginosa. In conclusion, both cyanobacterial and green algal strains investigated were negatively affected by the presence of competing species. M. aeruginosa responded to the presence of green algae by increasing its MC production. The green algal strains significantly inhibited the growth of M. aeruginosa.


Allelopathy Species competition Phytoplankton Mixed algal cultivation Cyanotoxins Monoraphidium Scenedesmus Microcystis 



This study was supported by grants from São Paulo Research Foundation (FAPESP—2011/50840-0 and 2013/11306-3 to M.A. Chia) and Brazilian National Research Council (CNPq—301739/2011-0).


  1. Babica P, Bláha L, Marsalek B (2006) Exploring the natural role of microcystins—a review of effects on photoautotrophic organisms. J Phycol 42:9–20Google Scholar
  2. Bártova K, Hilscherova K, Babica P, Marsálek B, Bláha L (2011) Effects of microcystin and complex cyanobacterial samples on the growth and oxidative stress parameters in green alga Pseudokirchneriella subcapitata and comparison with the model oxidative stressor-herbicide paraquat. Environ Toxicol 26:641–648PubMedCrossRefGoogle Scholar
  3. Bar-Yosef Y, Sukenik A, Hadas O, Viner-Mozzini Y, Kaplan A (2010) Enslavement in the water body by toxic Aphanizomenon ovalisporum, inducing alkaline phosphatase in phytoplanktons. Curr Biol 20:1557–1561PubMedCrossRefGoogle Scholar
  4. B-Beres V, Grigorszky I, Vasas G, Borics G, Varbiro G, Nagy SA, Borbely G, Bacsi I (2012) The effects of Microcystis aeruginosa (cyanobacterium) on Cryptomonas ovata (Cryptophyta) in laboratory cultures: why these organisms do not coexist in steady-state assemblages? Hydrobiologia 691:97–107CrossRefGoogle Scholar
  5. Bittencourt-Oliveira MC (2003) Detection of potential microcystin-producing cyanobacteria in Brazilian reservoirs with a mcyB molecular marker. Harmful Algae 2:51–60CrossRefGoogle Scholar
  6. Bittencourt-Oliveira MC, Oliveira MC, Pinto E (2011) Diversity of microcystin-producing genotypes in Brazilian strains of Microcystis (Cyanobacteria). Braz J Biol 71:209–216PubMedCrossRefGoogle Scholar
  7. Bittencourt-Oliveira MC, Camargo-Santos D, Moura AN, Francisco IB, Dias CTS, Molica RJR, Cordeiro-Araújo MK (2013) Effect of toxic and non-toxic crude extracts on different Microcystis species (Cyanobacteria). Afr J Microbiol Res 7:2596–2600Google Scholar
  8. Briand E, Gugger M, François JCC, Bernard J, Humbert F, Quiblier C (2008) Temporal variations in the dynamics of potentially microcystin-producing strains in a bloom-forming Planktothrix agardhii (cyanobacterium) population. Appl Environ Microbiol 74:3839–3848PubMedCentralPubMedCrossRefGoogle Scholar
  9. Briand E, Bormans M, Quiblier C, Salençon MJ, Humbert JF (2012) Evidence of the cost of the production of microcystins by Microcystis aeruginosa under differing light and nitrate environmental conditions. PLoS One 7(1):e29981PubMedCentralPubMedCrossRefGoogle Scholar
  10. Campos L, Araújo P, Pinheiro C, Azevedo J, Osório H, Vasconcelos V (2013) Effects on growth, antioxidant enzyme activity and levels of extracellular proteins in the green alga Chlorella vulgaris exposed to crude cyanobacterial extracts and pure microcystin and cylindrospermopsin. Ecotoxicol Environ Saf 94:45–53PubMedCrossRefGoogle Scholar
  11. Chen YW, Qin BQ, Teubner K, Dokulil MT (2003) Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China. J Plankton Res 25:445–453CrossRefGoogle Scholar
  12. Dunker S, Jakob T, Wilhelm C (2013) Contrasting effects of the cyanobacterium Microcystis aeruginosa on the growth and physiology of two green algae, Oocystis marsonii and Scenedesmus obliquus, revealed by flow cytometry. Freshw Biol 58:1573–1587CrossRefGoogle Scholar
  13. Fogg GE, Thake B (1987) Algae Cultures and Phytoplankton Ecology. 3rd edn London: The University of Wisconsins Press Ltd p 269Google Scholar
  14. Frossard V, Versanne-Janodet S, Aleya L (2014) Factors supporting harmful macroalgal blooms in flowing waters: a 2-year study in the lower Ain River, France. Harmful Algae 33:19–28CrossRefGoogle Scholar
  15. Guillard RRL (1973) Division rates. In: Stein J (ed) Handbook of phycological methods: culture methods and growth measurements. Cambridge University Press, Cambridge, pp 289–311Google Scholar
  16. Harada KI, Ozaki K, Tsuzuki S, Kato H, Hasegawa M, Kuroda E, Arii S, Tsuji K (2009) Blue color formation of cyanobacteria with b-cyclocitral. J Chem Ecol 35:1295–1301PubMedCrossRefGoogle Scholar
  17. Harel M, Weiss G, Lieman-Hurwitz J, Gun J, Lev O, Lebendiker M, Temper V, Block C, Sukenik A, Zohary T, Braun S, Carmeli S, Kaplan A (2013) Interactions between Scenedesmus and Microcystis may be used to clarify the role of secondary metabolites. Environ Microbiol Rep 5:97–104PubMedCrossRefGoogle Scholar
  18. Hu ZQ, Liu YD, Li DH (2004) Physiological and biochemical analyses of microcystin-RR toxicity to the cyanobacterium Synechococcus elongatus. Environ Toxicol 19:571–577PubMedCrossRefGoogle Scholar
  19. Jochimsen EM, Carmichael WW, An JS, Cardo DM, Cookson ST, Holmes CE, Antunes MB, de Melo Filho DA, Lyra TM, Barreto VS, Azevedo SM, Jarvis WR (1998) Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. New Engl J Med 338:873–878PubMedCrossRefGoogle Scholar
  20. Jonsson PR, Pavia H, Toth G (2009) Formation of harmful algal blooms cannot be explained by allelopathic interactions. Proc Natl Acad Sci 106:11177–11182PubMedCentralPubMedCrossRefGoogle Scholar
  21. Kaplan A, Harel M, Kaplan-Levy RN, Hadas O, Sukenik A, Dittmann E (2012) The languages spoken in the water body (or the biological role of cyanobacterial toxins). Front Microbiol 3:138PubMedCentralPubMedCrossRefGoogle Scholar
  22. Kemp A, John J (2006) Microcystins associated with Microcystis dominated blooms in the southwest wetlands, Western Australia. Environ Toxicol 21:125–130PubMedCrossRefGoogle Scholar
  23. Kuwata A, Miyazaki T (2000) Effects of ammonium supply rates on competition between Microcystis novacekii (Cyanobacteria) and Scenedesmus quadricauda (Chlorophyta): simulation study. Ecol Modell 135:81–87CrossRefGoogle Scholar
  24. Leao PN, Vasconcelos MTSD, Vasconcelos VM (2009) Allelopathic activity of cyanobacteria on green microalgae at low cell densities. Eur J Phycol 44:347–355CrossRefGoogle Scholar
  25. Leflaive J, Ten-Hage L (2007) Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshw Biol 52:199–214CrossRefGoogle Scholar
  26. Li Y, Li D (2012) Competition between toxic Microcystis aeruginosa and nontoxic Microcystis wesenbergii with Anabaena PCC7120. J Appl Phycol 24:69–78CrossRefGoogle Scholar
  27. Lund JWG, Kipling C, Lecren ED (1958) The invert microscope method of estimating algae numbers and statistical basis of estimations by counting. Hydrobiologia 11:143–170CrossRefGoogle Scholar
  28. Magrann T, Dunbar SG, Boskovic DS, Hayes WK (2012) Impacts of Microcystis on algal biodiversity and use of new technology to remove Microcystis and dissolved nutrients. Lakes Reserv Res Manag 17:231–239CrossRefGoogle Scholar
  29. Máthé C, M-Hamvas M, Vasas G, Surányi G, Bácsi I, Beyer D, Tóth S, Tímár M, Borbély G (2007) Microcystin-LR, a cyanobacterial toxin, induces growth inhibition and histological alterations in common reed (Phragmites australis) plants regenerated from embryogenic calli. New Phytol 176:824–835Google Scholar
  30. Mello MM, Soares MCS, Roland F, Lurling M (2012) Growth inhibition and colony formation in the cyanobacterium Microcystis aeruginosa induced by the cyanobacterium Cylindrospermopsis raciborskii. J Plankton Res 34:987–994CrossRefGoogle Scholar
  31. Papadimitriou T, Katsiapi M, Kormas KA, Moustaka-Gouni M, Kagalou I (2013) Artificially-born “killer” lake: phytoplankton based water quality and microcystin affected fish in a reconstructed lake. Sci Total Environ 452–453:116–124PubMedCrossRefGoogle Scholar
  32. Pinheiro C, Azevedo J, Campos A, Loureiro S, Vasconcelos V (2013) Absence of negative allelopathic effects of cylindrospermopsin and microcystin-LR on selected marine and freshwater phytoplankton species. Hydrobiologia 705:27–42CrossRefGoogle Scholar
  33. Rashidan KK, Bird DF (2001) Role of predatory bacteria in the termination of a cyanobacterial bloom. Microb Ecol 41:97–105PubMedGoogle Scholar
  34. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61CrossRefGoogle Scholar
  35. Ross C, Santiago-Vazquez L, Paul V (2006) Toxin release in response to oxidative stress and programmed cell death in the cyanobacterium Microcystis aeruginosa. Aquat Toxicol 78:66–73PubMedCrossRefGoogle Scholar
  36. Sedmak B, Carmeli S, Elersek T (2008) “Non-toxic” cyclic peptides induce lysis of cyanobacteria—an effective cell population density control mechanism in cyanobacterial blooms. Microb Ecol 56:201–209PubMedCrossRefGoogle Scholar
  37. Sevilla E, Martin-Luna B, Vela L, Bes MT, Fillat MF, Peleato ML (2008) Iron availability affects mcyD expression and microcystin-LR synthesis in Microcystis aeruginosa PCC 7806. Environ Microbiol 10:2476–2483PubMedCrossRefGoogle Scholar
  38. Shen H, Song L (2007) Comparative studies on physiological responses to phosphorus in two phenotypes of bloom-forming Microcystis. Hydrobiologia 592:475–486CrossRefGoogle Scholar
  39. Sukenik A, Eshkol R, Livne A, Hadas O, Rom M, Tchernov D, Vardi A, Kaplan A (2002) Inhibition of growth and photosynthesis of the dinoflagellate Peridinium gatunense by Microcystis sp. (cyanobacteria): a novel allelopathic mechanism. Limnol Oceanogr 47:1656–1663CrossRefGoogle Scholar
  40. Takeya K, Kuwata A, Yoshida M, Miyazaki T (2004) Effect of dilution rate on competitive interactions between the cyanobacterium Microcystis novacekii and the green alga Scenedesmus quadricauda in mixed chemostat cultures. J Plankton Res 26:29–35CrossRefGoogle Scholar
  41. Wiegand C, Pflugmacher S (2005) Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review. Toxicol Appl Pharm 203:201–218CrossRefGoogle Scholar
  42. Xu N, Duan S, Li A, Zhang C, Cai Z, Hu Z (2010) Effects of temperature, salinity and irradiance on the growth of the harmful dinoflagellate Prorocentrum donghaienense Lu. Harmful Algae 9:13–17CrossRefGoogle Scholar
  43. Yang J, Deng X, Xian Q, Qian X, Li A (2014) Allelopathic effect of Microcystis aeruginosa on Microcystis wesenbergii: microcystin-LR as a potential allelochemical. Hydrobiologia 727:65–73Google Scholar
  44. You XH, Wang ZL, Shi XY et al (2007) Advances in the studies of phytoplankton interspecific competition. Trans Oceanol Limn 4:161–166Google Scholar
  45. Zhang P, Zhai C, Wang X, Liu C, Jiang J, Xue Y (2013) Growth competition between Microcystis aeruginosa and Quadrigula chodatii under controlled conditions. J Appl Phycol 25:555–565CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Maria do Carmo Bittencourt-Oliveira
    • 1
    • 2
    Email author
  • Mathias Ahii Chia
    • 1
  • Helton Soriano Bezerra de Oliveira
    • 1
    • 2
  • Micheline Kézia Cordeiro Araújo
    • 1
    • 2
  • Renato José Reis Molica
    • 2
  • Carlos Tadeu Santos Dias
    • 3
  1. 1.Department of Biological Sciences, Luiz de Queiroz College of AgricultureUniversity of São PauloPiracicabaBrazil
  2. 2.Graduate Program in BotanyRural and Federal University of PernambucoRecifeBrazil
  3. 3.Department of Exact Sciences, Luiz de Queiroz College of AgricultureUniversity of São PauloPiracicabaBrazil

Personalised recommendations