Journal of Applied Phycology

, Volume 25, Issue 3, pp 743–756 | Cite as

High-value products from microalgae—their development and commercialisation

  • Michael A. Borowitzka


Microalgae (including the cyanobacteria) are established commercial sources of high-value chemicals such as β-carotene, astaxanthin, docosahexaenoic acid, eicosahexaenoic acid, phycobilin pigments and algal extracts for use in cosmetics. Microalgae are also increasingly playing a role in cosmaceuticals, nutraceuticals and functional foods. In the last few years, there has been renewed interest in microalgae as commercial sources of these and other high-value compounds, driven in part by the attempts to develop commercially viable biofuels from microalgae. This paper briefly reviews the main existing and potential high-value products which can be derived from microalgae and considers their commercial development with a particular focus on the various aspects which need to be considered on the path to commercialisation, using the experience gained in the commercialisation of existing algae products. These considerations include the existing and potential market size and market characteristics of the product, competition by chemically synthesised products or by ‘natural’ compounds from other organisms such as fungi, bacteria, higher plants, etc., product quality requirements and assurance, and the legal and regulatory environment.


Microalgae Cosmaceuticals Nutraceuticals Functional foods Polyunsaturated fatty acids Polysaccharides Carotenoids Pigments Regulations GRAS 


  1. Achitouv E, Metzger P, Rager M, Largeau C (2004) C31–C34 methylated squalenes from a Bolivian strain of Botryococcus braunii. Phytochem 65:3159–3165CrossRefGoogle Scholar
  2. Alonso L, Grima EM, Perez JAS, Sanchez JLG, Camacho FG (1992) Fatty acid variation among different isolates of a single strain of Isochrysis galbana. Phytochem 31:3901–3904CrossRefGoogle Scholar
  3. Arad S, Levy-Ontman O (2010) Red microalgal cell-wall polysaccharides: biotechnological aspects. Curr Opin Biotechnol 21:358–364PubMedCrossRefGoogle Scholar
  4. Arad S, Cohen E, Ben-Amotz A (1993) Accumulation of canthaxanthin in Chlorella emersonii. Physiol Plant 87:232–236CrossRefGoogle Scholar
  5. Arad S, Cohen E, Yaron A (1996) Non-soluble colouring material used in cosmetics and food preparations. Europe Patent 693535Google Scholar
  6. Arai S (1996) Studies on functional foods in Japan: state of the art. Biosci Biotech Biochem 60:9–15CrossRefGoogle Scholar
  7. Ausich RL, Sanders DJ (1999) Process for the isolation and purification of lycopene crystals. USA Patent 5858700Google Scholar
  8. Bagchi D (2006) Nutraceuticals and functional foods regulations in the United States and around the world. Toxicology 221:1–3PubMedCrossRefGoogle Scholar
  9. Baker JT (1984) Seaweeds in pharmaceutical studies and applications. Hydrobiologia 116(117):29–40CrossRefGoogle Scholar
  10. Balskus EP, Walsh CT (2010) The genetic and molecular basis for sunscreen biosynthesis in cyanobacteria. Science 329:1653–1656PubMedCrossRefGoogle Scholar
  11. Barclay WR (1994) Process for growing Thraustochytrium and Schizochytrium using non-chloride salts to produce a microfloral biomass having omega-3-highly unsaturated fatty acids. USA Patent 5,340,742Google Scholar
  12. Barclay W, Weaver C, Metz J, Hansen J (2010) Development of docosahexaenoic acid production technology using Schizochytrium: historical perspective and update. In: Cohen Z, Ratledge C (eds) Single cell oils. Microbial and algal oils. AOCS Press, Urbana, pp 75–96Google Scholar
  13. Batista AP, Nunes MC, Fradinho P, Gouveia L, Sousa I, Raymundo A, Franco JM (2012) Novel foods with microalgal ingredients—effect of gel setting conditions on the linear viscoelasticity of Spirulina and Haematococcus gels. J Food Eng 110:182–189CrossRefGoogle Scholar
  14. Belay A (1997) Mass culture of Spirulina outdoors—the Earthrise Farms experience. In: Vonshak A (ed) Spirulina platensis (Arthrospira): physiology, cell-biology and biochemistry. Taylor & Francis, London, pp 131–158Google Scholar
  15. Belay A (2008) Spirulina (Arthrospira): production and quality assurance. In: Gershwin ME, Belay A (eds) Spirulina in human nutrition and health. CRC Press, Boca Raton, pp 1–25Google Scholar
  16. Ben-Amotz A, Avron M (1989) The biotechnology of mass culturing Dunaliella for products of commercial interest. In: Cresswell RC, Rees TAV, Shah N (eds) Algal and cyanobacterial biotechnology. Longman Scientific & Technical, Harlow, pp 91–114Google Scholar
  17. Ben-Amotz A, Lers A, Avron M (1988) Stereoisomers of ß-carotene and phytoene in the alga Dunaliella bardawil. Plant Physiol 86:1286–1291PubMedCrossRefGoogle Scholar
  18. Bhati R, Mallick N (2012) Production and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) co-polymer by a N2-fixing cyanobacterium, Nostoc muscorum Agardh. J Chem Technol Biotechnol 87:505–512CrossRefGoogle Scholar
  19. Bigogno C, Khozin-Goldberg I, Boussiba S, Vonshak A, Cohen Z (2002) Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochem 60:497–503CrossRefGoogle Scholar
  20. Bixler HJ, Porse H (2011) A decade of change in the seaweed hydrocolloids industry. J Appl Phycol 23:321–335CrossRefGoogle Scholar
  21. Blanco AM, Moreno J, Del Campo JA, Rivas J, Guerrero MG (2007) Outdoor cultivation of lutein-rich cells of Muriellopsis sp. in open ponds. Appl Microbiol Biotechnol 73:1259–1266PubMedCrossRefGoogle Scholar
  22. Borowitzka MA (1988a) Fats, oils and hydrocarbons. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 257–287Google Scholar
  23. Borowitzka MA (1988b) Vitamins and fine chemicals. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 153–196Google Scholar
  24. Borowitzka MA (1992) Algal biotechnology products and processes: matching science and economics. J Appl Phycol 4:267–279CrossRefGoogle Scholar
  25. Borowitzka MA (1995) Microalgae as sources of pharmaceuticals and other biologically active compounds. J Appl Phycol 7:3–15CrossRefGoogle Scholar
  26. Borowitzka MA (1999a) Economic evaluation of microalgal processes and products. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis, London, pp 387–409Google Scholar
  27. Borowitzka MA (1999b) Pharmaceuticals and agrochemicals from microalgae. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis, London, pp 313–352Google Scholar
  28. Borowitzka MA (2010) Carotenoid production using microorganisms. In: Cohen Z, Ratledge C (eds) Single cell oils: microbial and algal oils. AOCS Press, Urbana, pp 225–240Google Scholar
  29. Borowitzka MA (2013) Energy from microalgae: a short history. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Spinger, Dordrecht, pp 1–15CrossRefGoogle Scholar
  30. Borowitzka MA, Borowitzka LJ (1988) Dunaliella. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 27–58Google Scholar
  31. Borowitzka LJ, Borowitzka MA (1989) ß-Carotene (Provitamin A) production with algae. In: Vandamme EJ (ed) Biotechnology of vitamins, pigments and growth factors. Elsevier Applied Science, London, pp 15–26CrossRefGoogle Scholar
  32. Borowitzka MA, Huisman JM (1993) The ecology of Dunaliella salina (Chlorophyceae, Volvocales)—effect of environmental conditions on aplanospore formation. Bot Mar 36:233–243CrossRefGoogle Scholar
  33. Boussiba S, Vonshak A, Cohen Z, Richmond A (1997) A procedure for large-scale production of astaxanthin from Haematococcus. PCT Patent 9:728,274Google Scholar
  34. Chacón-Lee TL, González-Mariño GE (2010) Microalgae for “healthy” foods—possibilities and challenges. Compr Rev Food Sc Food Saf 9:655–675CrossRefGoogle Scholar
  35. Chetsumon A, Maeda I, Umeda F, Yagi K, Miura Y, Mizoguchi T (1994) Antibiotic production by the immobilized cyanobacterium, Scytonema sp TISTR 8208, in a seaweed-type photobioreactor. J Appl Phycol 6:539–543CrossRefGoogle Scholar
  36. Chiuh C, Chang S, Chen Y, Hu I (2012) Pharmaceutical composition for inhibiting infection and replication of influenza A and B virus, and the manufacture thereof. European Patent Application EP2455448Google Scholar
  37. Choudhari SM, Ananthanarayan L, Singhal RS (2008) Use of metabolic stimulators and inhibitors for enhanced production of b-carotene and lycopene by Blakeslea trispora NRRL 2895 and 2896. Bioresour Technol 99:3166–3173PubMedCrossRefGoogle Scholar
  38. Chrismadha T, Borowitzka MA (1994) Effect of cell density and irradiance on growth, proximate composition and eicosapentaenoic acid production of Phaeodactylum tricornutum grown in a tubular photobioreactor. J Appl Phycol 6:67–74CrossRefGoogle Scholar
  39. Cohen Z (1999) Porphyridium cruentum. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis, London, pp 1–24Google Scholar
  40. Cohen Z, Khozin-Goldberg I (2010) Searching for polyunsaturated fatty acid-rich microalgae. In: Cohen Z, Ratledge C (eds) Single cell oils: microbial and algal oils. AOCS Publishing, Urbana, pp 201–224Google Scholar
  41. Coppens P, da Silva MF, Pettman S (2006) European regulations on nutraceuticals, dietary supplements and functional foods: a framework based on safety. Toxicology 221:59–74PubMedCrossRefGoogle Scholar
  42. Coragliotti A, Franklin S, Day AG, Decker SM (2012) Microalgal polysaccharide compositions. USA Patent Application 2012/0202768Google Scholar
  43. Costa Perez J (2003) Method of producing beta-carotene by means of mixed culture fermentation using (+) and (−) strains of Blakeslea trispora. European Patent Application 1,367,131Google Scholar
  44. Cysewski GR, Lorenz RT (2004) Industrial production of microalgal cell-mass and secondary products—species of high potential: Haematococcus. In: Richmond A (ed) Microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford, pp 281–288Google Scholar
  45. Del Campo JA, Rodríguez H, Moreno J, Vargas MA, Rivas J, Guerrero MG (2001) Lutein production by Muriellopsis sp. in an outdoor tubular photobioreactor. J Biotechnol 85:289–295PubMedCrossRefGoogle Scholar
  46. Del Campo JA, Rodríguez H, Moreno J, Vargas MÁ, Rivas J, Guerrero MG (2004) Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Appl Microbiol Biotechnol 64:848–854PubMedCrossRefGoogle Scholar
  47. Demain AL (2007) The business of biotechnology. Ind Biotechnol 3:269–283CrossRefGoogle Scholar
  48. Deng R, Chow T-J (2010) Hyperlipidemic, antioxidant and antiinflammatory activities of microalgae Spirulina. Cardiovasc Ther 28:e33–e45PubMedCrossRefGoogle Scholar
  49. De Philippis R, Sili C, Paperi R, Vincenzini M (2001) Exopolysaccharide-producing cyanobacteria and their possible exploitation: a review. J Appl Phycol 13:293–299CrossRefGoogle Scholar
  50. De Philippis R, Colica G, Micheletti E (2011) Exopolysaccharide-producing cyanobacteria in heavy metal removal from water: molecular basis and practical applicability of the biosorption process. Appl Microbiol Biotechnol 92:697–708PubMedCrossRefGoogle Scholar
  51. Doncheck JA, Huss RJ, Running JA, Skatrud TJ (1996) L-ascorbic acid containing biomass of Chlorella pyrenoidosa. USA Patent 5,521,090Google Scholar
  52. Douglas DJ, Bates SS (1992) Production of domoic acid, a neurotoxic amino acid, by an axenic culture of the marine diatom Nitzschia pungens f multiseries Hasle. Can J Fish Aquat Sci 49:85–90CrossRefGoogle Scholar
  53. Durand-Chastel H (1980) Production and use of Spirulina in Mexico. In: Shelef G, Soeder CJ (eds) Algae biomass. Elsevier/North Holland Biomedical Press, Amsterdam, pp 51–64Google Scholar
  54. EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS) (2012) Guidance for submission for food additive evaluations. EFSA J 10(7):2760Google Scholar
  55. EFSA Scientific Committee (2009) Guidance on safety assessment of botanicals and botanical preparations intended for use as ingredients in food supplements. EFSA J 7(9):1249Google Scholar
  56. Eriksen NT (2008) Production of phycocyanin—a pigment with applications in biology, biotechnology, foods and medicine. Appl Microbiol Biotechnol 80:1–14PubMedCrossRefGoogle Scholar
  57. Fabregas J, Aran J, Morales ED, Lamela T, Otero A (1997) Modification of sterol concentration in marine microalgae. Phytochem 46:1189–1191Google Scholar
  58. Fan K, Aki T, Chen F, Jiang Y (2010) Enhanced production of squalene in the thraustochytrid Aurantiochytrium mangrovei by medium optimization and treatment with terbinafine. World J Microbiol Biotechnol 26:1303–1309CrossRefGoogle Scholar
  59. Fehling J, Stoecker DK, Baldauf SL (2007) Photosynthesis and the eukaryote tree of life. In: Falkowski PG, Knoll AH (eds) Evolution of primary producers in the sea. Academic, NY, pp 75–107CrossRefGoogle Scholar
  60. Fernández-Sevilla J, Acién Fernández F, Molina Grima E (2010) Biotechnological production of lutein and its applications. Appl Microbiol Biotechnol 86:27–40PubMedCrossRefGoogle Scholar
  61. Francavilla M, Trotta P, Luque R (2010) Phytosterols from Dunaliella tertiolecta and Dunaliella salina: a potentially novel industrial application. Bioresour Technol 101:4144–4150PubMedCrossRefGoogle Scholar
  62. Francavilla M, Colaianna M, Zotti M, Morgese MG, Trotta P, Tucci P, Schiavone S, Cuomo V, Trabace L (2012) Extraction, characterization and in vivo neuromodulatory activity of phytosterols from microalga Dunaliella tertiolecta. Curr Med Chem 19:3058–3067PubMedCrossRefGoogle Scholar
  63. Frost & Sullivan (2010) Frost & Sullivan and the Global Organisation for EPA and DHA omega-3 global overview of the marine and algal oil EPA and DHA omega-3 ingredients market. ChicagoGoogle Scholar
  64. Garcia-Pichel F, Castenholz RW (1993) Occurrence of UV-absorbing, mycosporine-like compounds among cyanobacterial isolates and an estimate of their screening capacity. Appl Environ Microbiol 59:163–169PubMedGoogle Scholar
  65. Gellenbeck K (2012) Utilization of algal materials for nutraceutical and cosmeceutical applications—what do manufacturers need to know? J Appl Phycol 24:309–313CrossRefGoogle Scholar
  66. Gerwick WH, Moore BS (2012) Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chem Biol 19:85–98PubMedCrossRefGoogle Scholar
  67. Gerwick WH, Roberts MA, Proteau PJ, Chen JL (1994) Screening cultured marine microalgae for anticancer-type activity. J Appl Phycol 6:143–149CrossRefGoogle Scholar
  68. Glazer AN (1994) Phycobiliproteins—a family of valuable, widely used fluorophores. J Appl Phycol 6:105–112CrossRefGoogle Scholar
  69. Glazer A, Streyer L (1984) Phycoflours. Trends Biochem Sci 8:423–427CrossRefGoogle Scholar
  70. Goiris K, Muylaert K, Fraeye I, Foubert I, De Brabanter J, De Cooman L (2012) Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. J Appl Phycol. doi: 10.1007/s10811-012-9804-6:1-10
  71. Gouveia L, Batista AP, Sousa I, Raymundo A, Banderra NM (2008a) Microalgae in novel food products. In: Konstantinos N, Papadopoulos N (eds) Food chemistry research developments. Nova, New York, pp 75–111Google Scholar
  72. Gouveia L, Coutinho C, Mendonca E, Batista AP, Sousa I, Banderra NM, Raymundo A (2008b) Functional biscuits with PUFA-ω3 from Isochrysis galbana. J Sci Food Agric 88:891–896CrossRefGoogle Scholar
  73. GRAS (2012) GRAS Notice 000424: notice to US Food and Drug Administration the use of CyaninPlus™ is generally recognised as safe. Accessed 12 Dec 2012
  74. Grobbelaar JU (2003) Quality control and assurance: crucial for the sustainability of the applied phycology industry. J Appl Phycol 15:209–215CrossRefGoogle Scholar
  75. Grung M, D’Souza FML, Borowitzka MA, Liaaen-Jensen S (1992) Algal carotenoids 51. Secondary carotenoids 2. Haematococcus pluvialis aplanospores as a source of (3S,3′S)-astaxanthin esters. J Appl Phycol 4:165–171CrossRefGoogle Scholar
  76. Haase S, Huchzermeyer B, Rath T (2012) PHB accumulation in Nostoc muscorum under different carbon stress situations. J Appl Phycol 24:157–162CrossRefGoogle Scholar
  77. Hammond BG, Mayhew DA, Holson JF, Nemec MD, Mast RW, Sander WJ (2001) Safety assessment of DHA-rich microalgae from Schizochytrium sp.: II. Developmental toxicity evaluation in rats and rabbits. Regul Toxicol Pharmacol 33:205–217PubMedCrossRefGoogle Scholar
  78. Hammond BG, Mayhew DA, Kier LD, Mast RW, Sander WJ (2002) Safety assessment of DHA-rich microalgae from Schizochytrium sp.: IV. Mutagenicity studies. Regul Toxicol Pharmacol 35:255–265PubMedCrossRefGoogle Scholar
  79. Hanagata N (1999) Secondary carotenoid accumulation in Scenedemus komarekii (Chlorophyceae, Chlorophyta). J Phycol 35:960–966CrossRefGoogle Scholar
  80. Harder R, von Witsch H (1942) Die Massenkultur von Diatomeen. Ber Deutsch Bot Ges 60:146–152Google Scholar
  81. Hayashi T, Hayashi K, Maeda M, Kojima I (1996) Calcium spirulan, an inhibitor of enveloped virus replication, from a blue-green alga Spirulina platensis. J Nat Prod 59:83–87PubMedCrossRefGoogle Scholar
  82. Herrero M, Cifuentes A, Ibanez E (2006) Sub- and supercritical fluid extraction of functional ingredients from different natural sources: plants, food-by-products, algae and microalgae. A review. Food Chem 98:136–148CrossRefGoogle Scholar
  83. Hu Q (2004) Industrial production of microalgal cell-mass and secondary products—major industrial species: Arthrospira (Spirulina) platensis. In: Richmond A (ed) Microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford, pp 264–272Google Scholar
  84. Hu Q, Hu Z, Cohen Z, Richmond A (1997) Enhancement of eicosapentaenoic acid (EPA) and g-linolenic acid (GLA) production by manipulating cell density in outdoor cultures of Monodus subterraneus (Eustigmatophyte) and Spirulina platensis (Cyanobacterium). Eur J Phycol 32:81–88CrossRefGoogle Scholar
  85. Hu L, Huang B, Zuo M, Wei H (2008) Preparation of the phycoerythrin subunit liposome in a photodynamic experiment on liver cancer cells. Acta Pharmacol Sin 29:1539–1546PubMedCrossRefGoogle Scholar
  86. Huerlimann R, De Nys R, Heimann K (2010) Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up production. Biotechnol Bioeng 107:245–257PubMedCrossRefGoogle Scholar
  87. Ismail A (2010) Marine lipids overview: markets, regulations and the value chain. Oléagineux, Corps Gras, Lipides 17:205–208Google Scholar
  88. Jäger C, Sättler A, Schröder KR, Rögner M (2002) Use of mixoxanthophyll and/or echinenone for the prophylactic and/or therapeutic treatment of undesirable physical conditions conditioned or favoured by oxidative processes. PCT Patent Application WO02/24183Google Scholar
  89. Jin E, Feth B, Melis A (2003) A mutant of the green alga Dunaliella salina constitutively accumulates zeaxanthin under all growth conditions. Biotechnol Bioeng 81:115–124PubMedCrossRefGoogle Scholar
  90. Kathrein HR (1964) Production of carotenoids by the cultivation of algae. USA Patent 3,142,135Google Scholar
  91. Katz J, Janik JE, Younes A (2011) Brentuximab vedotin (SGN-35). Clin Cancer Res 17:6428–6436PubMedCrossRefGoogle Scholar
  92. Kaya K, Nakazawa A, Matsuura H, Honda D, Inouye I, Watanabe MM (2011) Thraustochytrid Aurantiochytrium sp. 18W-13a accummulates high amounts of squalene. Biosci Biotechnol Biochem 75:2246–2248PubMedCrossRefGoogle Scholar
  93. Kellam SJ, Cannell RJP, Owsianka AM, Walker JM (1988) Results of a large-scale screening programme to detect antifungal activity from marine and freshwater microalgae in laboratory culture. Brit Phycol J 23:45–47CrossRefGoogle Scholar
  94. Kilian O, Benemann CSE, Niyogi KK, Vick B (2011) High-efficiency homologous transformation in the oil-producing alga Nannochloropsis sp. Proc Natl Acad Sci U S A 108:21265–21269PubMedCrossRefGoogle Scholar
  95. Kim S-K, Pangestuti R (2011) Biological properties of cosmeceuticals derived from marine algae. In: Kim S-K (ed) Marine Cosmeceuticals. CRC Press, Boca Raton, pp 191–200Google Scholar
  96. Kim SM, Jung YJ, Kwon ON, Cha KH, Um BH, Chung D, Pan CH (2012) A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum. Appl Biochem Biotechnol 166:1843–1855PubMedCrossRefGoogle Scholar
  97. Klein B, Walter C, Lange H, Buchholz R (2012) Microalgae as natural sources for antioxidative compounds. J Appl Phycol 24:1133–1139CrossRefGoogle Scholar
  98. Koo S, Cha K, Song D-G, Chung D, Pan C-H (2012) Optimization of pressurized liquid extraction of zeaxanthin from Chlorella ellipsoidea. J Appl Phycol 24:725–730CrossRefGoogle Scholar
  99. Kroes R, Schaefer EJ, Squire RA, Williams GM (2003) A review of the safety of DHA45-oil. Food Chem Toxicol 41:1433–1446PubMedCrossRefGoogle Scholar
  100. Kyle DJ (2005) The future development of single cell oils. In: Cohen Z, Ratledge C (eds) Single cell oils. AOCS Publishing, Urbana, pp 239–248Google Scholar
  101. Kyle DJ, Boswell KDB, Gladue RM, Reeb SE (1992) Designer oils from microalgae as nutritional supplements. In: Bills DD, Kung SD (eds) Biotechnology and nutrition. Butterworth-Heinemann, Boston, pp 451–468Google Scholar
  102. Lemoine Y, Schoefs B (2010) Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. Photosynth Res 106:155–177PubMedCrossRefGoogle Scholar
  103. Li HB, Jiang Y, Chen F (2002) Isolation and purification of lutein from the microalga Chlorella vulgaris by extraction after saponification. J Agric Food Chem 50:1070–1072PubMedCrossRefGoogle Scholar
  104. Li H-B, Fan K-W, Chen F (2006) Isolation and purification of canthaxanthin from the microalga Chlorella zofingiensis by high-speed counter-current chromatography. J Sep Sci 29:699–703CrossRefGoogle Scholar
  105. Lignell A, Inborr J (2002) Method of the prophylactic treatment of mastitis. USA Patent 6,335,015Google Scholar
  106. Llewellyn CA, Airs RL (2010) Distribution and abundance of MAAs in 33 species of microalgae across 13 classes. Mar Drugs 8:1273–1291PubMedCrossRefGoogle Scholar
  107. Lopez Alonso D, Seguera del Castillo CI (1999) Genetic improvement of EPA content in microalgae. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis, London, pp 93–107Google Scholar
  108. Lorenz RT (2002) Method for retarding and preventing sunburn by UV light. USA Patent 6,433,025Google Scholar
  109. Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167PubMedCrossRefGoogle Scholar
  110. Lu C, Rao K, Hall D, Vonshak A (2001) Production of eicosapentaenoic acid (EPA) in Monodus subterraneus grown in a helical tubular photobioreactor as affected by cell density and light intensity. J Appl Phycol 13:517–522CrossRefGoogle Scholar
  111. Lu Y-M, Xiang W-Z, Wen Y-H (2011) Spirulina (Arthrospira) industry in Inner Mongolia of China: current status and prospects. J Appl Phycol 23:265–269PubMedCrossRefGoogle Scholar
  112. Luesch H, Moore RE, Paul VJ, Mooberry SL, Corbett TH (2001) Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J Nat Prod 64:907–910PubMedCrossRefGoogle Scholar
  113. Marshall J, Nichols PD, Hallegraeff GM (2002) Chemotaxonomic survey of sterols and fatty acids in six marine raphidophyte algae. J Appl Phycol 14:255–265CrossRefGoogle Scholar
  114. Massana R, Terrado R, Forn I, Lovejoy C, Pedrós-Alió C (2006) Distribution and abundance of uncultured heterotrophic flagellates in the world oceans. Environ Microbiol 8:1515–1522PubMedCrossRefGoogle Scholar
  115. Matsuura H, Watanabe M, Kaya K (2012) Echinenone production of a dark red-coloured strain of Botryococcus braunii. J Appl Phycol 24:973–977CrossRefGoogle Scholar
  116. Mayer AMS, Glaser KB, Cuevas C, Jacobs RS, Kem W, Little RD, McIntosh JM, Newman DJ, Potts BC, Shuster DE (2010) The odyssey of marine pharmaceuticals: a current pipeline perspective. Trends Pharmacol Sci 31:255–265PubMedCrossRefGoogle Scholar
  117. Mendes A, Reis A, Vasconcelos R, Guerra P, Lopes da Silva T (2009) Crypthecodinium cohnii with emphasis on DHA production: a review. J Appl Phycol 21:199–214CrossRefGoogle Scholar
  118. Menoyo D, Lopez-Bote CJ, Bautista JM, Obach A (2003) Growth, digestibility and fatty acid utilization in large Atlantic salmon (Salmo salar) fed varying levels of n-3 and saturated fatty acids. Aquaculture 225:295–307CrossRefGoogle Scholar
  119. Min-Thein U (1993) Production of Spirulina in Myanmar (Burma). Bull Inst Oceanogr, Monaco 12:175–178Google Scholar
  120. Mokady S, Abramovici A, Cogan U (1989) The safety evaluation of Dunaliella bardawil as a potential food supplement. Food Chem Toxicol 27:221–226PubMedCrossRefGoogle Scholar
  121. Molina Grima E, Sanchez Perez JA, Garcia Camacho F, Robles Medina A, Giminez Giminez A, Lopez Alonso D (1995) The production of polyunsaturated fatty acids by microalgae: from strain selection to product purification. Process Biochem 30:711–719Google Scholar
  122. Molina Grima E, Garcia Camacho F, Ácien Fernandez FG (1999) Production of EPA from Phaeodactylum tricornutum. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis, London, pp 57–92Google Scholar
  123. Morlière P, Mazière J, Santus R, Smith CD, Prinsep MR, Stobbe CC, Fenning MC, Golberg JL, Chapman JD (1998) Tolyporphin: a natural product from cyanobacteria with potent photosensitising activity against tumor cells in vitro and in vivo. Cancer Res 58:3571–3576PubMedGoogle Scholar
  124. Morton SL, Bomber JW (1994) Maximizing okadaic acid content from Prorocentrum hoffmannianum Faust. J Appl Phycol 6:41–44CrossRefGoogle Scholar
  125. Nagai H, Mikami Y, Yazawa K, Gonoi T, Yasumoto T (1993) Biological activities of novel polyether antifungals, gambieric acids A and B from a marine dinoflagellate Gambierdiscus toxicus. J Antibiot 46:520–522PubMedCrossRefGoogle Scholar
  126. Nasrabadi MR, Razavi SH (2010) Enhancement of canthaxanthin production from Dietzia natronolimnaea HS-1 in a fed-batch process using trace elements and statistical methods. Braz J Chem Eng 27:517–529CrossRefGoogle Scholar
  127. Ohta S, Shiomi Y, Kawashima A, Aozasa O, Nakao T, Nagate T, Kitamura K, Miyata H (1995) Antibiotic effect of linolenic acid from Chlorococcum strain HS-101 and Dunaliella primolecta on methicillin-resistant Staphylococcus aureus. J Appl Phycol 7:121–127CrossRefGoogle Scholar
  128. Oi VT, Glazer AN, Sryer L (1982) Fluorescent phycobilin conjugates for analysis of cells and molecules. J Cell Biol 93:981–986PubMedCrossRefGoogle Scholar
  129. Olaizola M (2000) Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. J Appl Phycol 12:499–506CrossRefGoogle Scholar
  130. Patterson GML, Larsen LK, Moore RE (1994a) Bioactive natural products from blue-green algae. J Appl Phycol 6:151–157CrossRefGoogle Scholar
  131. Patterson GW, Tsitsatzardis E, Wikfors GH, Ghosh P, Smith BC, Gladu PK (1994b) Sterols of eustigmatophytes. Lipids 29:661–664PubMedCrossRefGoogle Scholar
  132. Pelah D, Sintov A, Cohen E (2004) The effect of salt stress on the production of canthaxanthin and astaxanthin by Chlorella zofingiensis grown under limited light intensity. World J Microbiol Biotechnol 20:483–486CrossRefGoogle Scholar
  133. Pereira S, Zille A, Micheletti E, Moradas-Ferreira P, De Philippis R, Tamagnini P (2009) Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev 33:917–941PubMedCrossRefGoogle Scholar
  134. Pérez JAS (1994) N-3 polyunsaturated fatty acid productivity of the marine microalga Isochrysis galbana—growth conditions and phenotypic selection. J Appl Phycol 6:475–478CrossRefGoogle Scholar
  135. Pettit GR, Kamano Y, Herald CL, Tuinman AA, Boettner FE, Kizu H, Schmidt JM, Baczynskyj L, Tomer K, Bonterns RJ (1987) The isolation and structure of a remarkable marine animal antineoplastic constituent: dolastatin 10. J Am Chem Soc 109:6883–6885CrossRefGoogle Scholar
  136. Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82:233–247CrossRefGoogle Scholar
  137. Piccaglia R, Marotti M, Grandi S (1998) Lutein and lutein ester content in different types of Tagetes patula and T. erecta. Ind Crops Prod 8:45–51CrossRefGoogle Scholar
  138. Plaza M, Herrero M, Cifuentes A, Ibáñez E (2009) Innovative natural functional ingredients from microalgae. J Agric Food Chem 57:7159–7170PubMedCrossRefGoogle Scholar
  139. Pulz O, Gross W (2004) Valuable products from biotechnology of algae. Appl Microbiol Biotechnol 65:635–648PubMedCrossRefGoogle Scholar
  140. Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–815PubMedCrossRefGoogle Scholar
  141. Ratledge C (2010) Single cell oils for the 21st century. In: Cohen Z, Ratledge C (eds) Single cell oils. Microbial and algal oils. AOCS Press, Urbana, pp 3–26Google Scholar
  142. Reddy CSK, Ghai R, Rashmi KVC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137–146PubMedCrossRefGoogle Scholar
  143. Rito-Palomares M, Nuñez L, Amador D (2001) Practical application of aqueous two-phase systems for the development of a prototype process for c-phycocyanin recovery from Spirulina maxima. J Chem Technol Biotechnol 76:1273–1280CrossRefGoogle Scholar
  144. Rodríguez-Sáiz M, de la Fuente J, Barredo J (2010) Xanthophyllomyces dendrorhous for the industrial production of astaxanthin. Appl Microbiol Biotechnol 88:645–658PubMedCrossRefGoogle Scholar
  145. Ryan AS, Zeller S, Nelson EB (2010) Safety evaluation of single cell oils and the regulatory requirements for use as a food ingredient. In: Cohen Z, Ratledge C (eds) Single cell oils: microbial and algal oils. AOCS Publishing, Urbana, pp 317–350Google Scholar
  146. Sánchez J, Fernández-Sevilla J, Acién F, Cerón M, Pérez-Parra J, Molina-Grima E (2008) Biomass and lutein productivity of Scenedesmus almeriensis: influence of irradiance, dilution rate and temperature. Appl Microbiol Biotechnol 79:719–729PubMedCrossRefGoogle Scholar
  147. Schaeffer DJ, Krylov VS (2000) Anti-HIV activity of extracts and compounds from algae and cyanobacteria. Ecotoxicol Environ Saf 45:208–227PubMedCrossRefGoogle Scholar
  148. Schmidt I, Schewe H, Gassel S, Jin C, Buckingham J, Hümbelin M, Sandmann G, Schrader J (2011) Biotechnological production of astaxanthin with Phaffia rhodozyma/Xanthophyllomyces dendrorhous. Appl Microbiol Biotechnol 89:555–571PubMedCrossRefGoogle Scholar
  149. Schwenzfeier A, Wierenga PA, Gruppen H (2011) Isolation and characterization of soluble protein from the green microalgae Tetraselmis sp. Bioresour Technol 102:9121–9127PubMedCrossRefGoogle Scholar
  150. Schwenzfeier A, Helbig A, Wierenga PA, Gruppen H (2013) Emulsion properties of algae soluble protein isolate from Tetraselmis sp. Food Hydrocoll 30:258–263CrossRefGoogle Scholar
  151. Sekar S, Chandramohan M (2008) Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J Appl Phycol 20:113–136CrossRefGoogle Scholar
  152. Shi XM, Jiang Y, Chen F (2002) High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnol Prog 18:723–727PubMedCrossRefGoogle Scholar
  153. Singh S, Kate BN, Banerjee UC (2005) Bioactive compounds from cyanobacteria and microalgae: an overview. Crit Rev Biotechnol 25:73–95PubMedCrossRefGoogle Scholar
  154. Sioen I, Matthys C, Hyuybrechts I, Van Camp J, De Henauw S (2011) Consumption of plant sterols in Belgium: consumption patterns of plant sterol-enriched foods in Flanders, Belgium. Br J Nutr 105:911–918PubMedCrossRefGoogle Scholar
  155. Soeder CJ, Pabst W (1970) Gesichtspunkte fur die Verwendung von Mikroalgen in der Ernahrung von Mensch und Tier. Ber Deutsch Bot Ges 83:607–625Google Scholar
  156. Solovchenko A, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak M (2008) Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. J Appl Phycol 20:245–251CrossRefGoogle Scholar
  157. Sommer TR, D’Souza FML, Morrissy NM (1992) Pigmentation of adult rainbow trout, Oncorhynchus mykiss, using the green alga Haematococcus pluvialis. Aquaculture 106:63–74CrossRefGoogle Scholar
  158. Soong P (1980) Production and development of Chlorella and Spirulina in Taiwan. In: Shelef G, Soeder CJ (eds) Algae biomass. Elsevier/North Holland Biomedical Press, Amsterdam, pp 97–113Google Scholar
  159. Spanova M, Daum G (2011) Squalene—biochemistry, molecular biology, process biotechnology, and applications. Eur J Lipid Sci Technol 113:1299–1320CrossRefGoogle Scholar
  160. Spiller GA, Dewell A (2003) Safety of an astaxanthin-rich Haematococcus pluvialis algal axtract: a randomized clinical trial. J Med Food 6:51–56PubMedCrossRefGoogle Scholar
  161. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96PubMedCrossRefGoogle Scholar
  162. Steinberg DC (2005) Cosmaceutical regulations—a global perspective. Cosmet Toiletries 120:32–36Google Scholar
  163. Stephens E, Ross IL, King Z, Mussgnug JH, Kruse O, Posten C, Borowitzka MA, Hankamer B (2010) An economic and technical evaluation of microalgal biofuels. Nat Biotechnol 28:126–128PubMedCrossRefGoogle Scholar
  164. Stern RF, Horak A, Andrew RL, Coffroth M-A, Andersen RA, Küpper FC, Jameson I, Hoppenrath M, Véron B, Kasai F, Brand J, James ER, Keeling PJ (2010) Environmental barcoding reveals massive dinoflagellate diversity in marine environments. PLoS One 5:e13991PubMedCrossRefGoogle Scholar
  165. Stolz P, Obermayer B (2005) Manufacturing microalgae for skincare. Cosmet Toiletries 120:99–106Google Scholar
  166. Streekstra H (2010) Arachidonic acid: fermentative production by Mortierella fungi. In: Cohen Z, Ratledge C (eds) Single cell oils. Microbial and algal oils. AOCS Publishing, Urbana, pp 97–114Google Scholar
  167. Sukenik A (1999) Production of eicosapentaenoic acid by the marine eustigmatophyte Nannochloropsis. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis, London, pp 41–56Google Scholar
  168. Tababa H, Hirabayashi S, Inubushi K (2012) Media optimization of Parietochloris incisa for arachidonic acid accumulation in an outdoor vertical tubular photobioreactor. J Appl Phycol 24:887–895PubMedCrossRefGoogle Scholar
  169. Tamiya H (1957) Mass culture of algae. Ann Rev Plant Physiol 8:309–344CrossRefGoogle Scholar
  170. Tanticharoen M, Reungjitchachawali M, Boonag B, Vonktaveesuk P, Vonshak A, Cohen Z (1994) Optimization of γ-linolenic acid (GLA) production in Spirulina platensis. J Appl Phycol 6:295–300CrossRefGoogle Scholar
  171. Thomas SS, Swaminathan K, Nagaraj JB (2003) Process to produce astaxanthin from Haematococcus biomass. PCT Patent 03/027267Google Scholar
  172. Toh PSY, Jau M-H, Yew S-P, Abed RMM, Sudesh K (2008) Comparison of polyhydroxyalkonates biosynthesis, mobilization and the effects of cellular morphology in Spirulina platensis and Synechocystis sp. UNIWG. J Biosci 19:21–38Google Scholar
  173. Venkataraman LV, Becker WE, Shamala TR (1977) Studies on the cultivation of the alga Scenedesmus acutus as a single cell protein. Life Sci 20:223–234PubMedCrossRefGoogle Scholar
  174. Vincenzini M, De Philippis R (1999) Polyhydroxyalkonates. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis, London, pp 292–312Google Scholar
  175. Vincenzini M, Sili C, De Philippis R, Ena A, Materassi R (1990) Occurrence of poly-β-hydroxybutyrate in Spirulina species. J Bacteriol 172:2791–2792PubMedGoogle Scholar
  176. Volkman JV (2003) Sterols in microorganisms. Appl Microbiol Biotechnol 60:495–506PubMedGoogle Scholar
  177. von Oppen-Bezalel L, Shaish A (2009) Application of the colourless carotenoids, phytoene and phytofluene in cosmetics, wellness, nutrition, and theropeutics. In: Ben-Amotz A, Polle JEW, Subba Rao DV (eds) The alga Dunaliella: biodiversity, physiology, genomics and biotechnology. Science Publishers, Enfield, pp 423–444Google Scholar
  178. Wang Y, Chen T (2008) The biosynthetic pathway of carotenoids in the astaxanthin-producing green alga Chlorella zofingiensis. World J Microbiol Biotechnol 24:2927–2932CrossRefGoogle Scholar
  179. Whistler RL, BeMiller JN (eds) (1993) Industrial gums: polysaccharides and their derivatives, 3rd edn. Academic, San DiegoGoogle Scholar
  180. Wijffels RH, Barba E (2010) An outlook on microalgal biofuels. Science 329:796–799PubMedCrossRefGoogle Scholar
  181. Wu GF, Shen ZY, Wu QY (2002) Modification of carbon partitioning to enhance PHB production in Synechocystis sp. PCC6803. Enzyme Microb Technol 30:710–715CrossRefGoogle Scholar
  182. Wynn J, Behrens P, Sundararajan A, Hansen J, Apt K (2010) Production of single cell oils from dinoflagellates. In: Cohen Z, Ratledge C (eds) SIngle cell oils. Microbial and algal oils. AOCS Press, Urbana, pp 115–129Google Scholar
  183. Yamaguchi K, Murakami M, Okino T (1989) Screening of angiotensin-converting enzyme inhibitory activities in microalgae. J Appl Phycol 1:271–275CrossRefGoogle Scholar
  184. Zeller S (2005) Safety evaluation of single cell oils and the regulatory requirements for use as food ingredients. In: Cohen Z, Ratledge C (eds) Single cell oils. AOCS Press, Urbana, pp 161–181Google Scholar
  185. Zhukova NV, Aizdaicher NA (1995) Fatty acid composition of 15 species of marine microalgae. Phytochemistry 39:351–356CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Algae R&D Centre, School of Biological Sciences & BiotechnologyMurdoch UniversityMurdochAustralia

Personalised recommendations