Journal of Applied Phycology

, Volume 26, Issue 2, pp 1029–1042 | Cite as

Biochemical and antiviral activities of enzymatic hydrolysates from different invasive French seaweeds

  • K. Hardouin
  • A-S. Burlot
  • A. Umami
  • A. Tanniou
  • V. Stiger-Pouvreau
  • I. Widowati
  • G. Bedoux
  • N. BourgougnonEmail author


Proliferations of green, brown and red algae appear in shallow sandy bays in North Brittany (France), and they represent a real economic constraint for the affected communities. In addition to the nuisance for residents and tourist activity, the communities must carry out systematic collection. The collected algae are spread on agricultural land spreading or composted, but these solutions reach their limits rapidly, bringing little added value to the collected algae. Seaweeds are potentially excellent sources of bioactive metabolites that could represent useful leads in the development of new functional ingredients in pharmaceutical and cosmetic industries. The aim of this study was to propose the use of an enzyme-assisted extraction as a tool to improve the extraction efficiency of antiviral compounds from three invasive French seaweeds. We selected the red Solieria chordalis, the green Ulva sp. and the brown Sargassum muticum as models for these experiments. In comparison with water extraction at 50 °C for the same time of treatment, enzymatic hydrolysis increased the yields. The data suggest the potential of enzymatic hydrolysis for producing active fractions in the function of the algal biomass, the behaviour of the cell wall, the selectivity and the action of the enzyme. Enzymatic hydrolysis appeared less effective for polyphenol recovery, but was a promising softer technique for recovering proteins, neutral sugars, uronic acids and sulphate groups. The solvent-free process, higher extraction rate and higher yields, coupled to time-saving and lower cost, make this method economical and sustainable. By using a cell viability assay, all hydrolysate fractions tested were shown to be non-toxic to Vero cells. After 3 days of treatment, no microscopically visible alteration of normal cell morphology was observed even at 500 μg mL−1. S. chordalis extracts have an effective antiviral activity with EC50 between 23.0 and 101.1 μg mL−1 at a multiplicity of infection of 0.001 ID50/cells; 100 % and 98 % cellular protection were obtained for 500 μg mL−1 of hydrolysate extracts carbohydrase C3 and blank, respectively. Other extracts from S. chordalis inhibited viral production less effectively.


Sargassum muticum Solieria chordalis Ulva sp Hydrolysates Protease Carbohydrase Antiherpetic activity 


  1. Ahn CB, Jeon YJ, Kang DS, Shin TS, Jung BM (2004) Free radical scavenging activity of enzymatic extracts from a brown seaweed Scytosiphon lomentaria by electron spin resonance spectrometry. Food Res Int 37:253–258CrossRefGoogle Scholar
  2. Amano H, Noda H (1990) Proteins of protoplasts from red alga Porphyra yezoensis. Nippon Suisan Gakkaishi 56:1859–1864CrossRefGoogle Scholar
  3. Amano H, Noda H (1992) Proteins of protoplasts from several seaweeds. Nippon Suisan Gakkaishi 58:291–299CrossRefGoogle Scholar
  4. Arzel P (1987) Les Goémoniers. Le Chasse-Marée, Editions de l’estran. Douarnez, France, 305 ppGoogle Scholar
  5. Arzel P (2000) Sur la route des Algues, les goémoniers. Patrimoine maritime de Bretagne. Ed. Uhel Izel, 65 ppGoogle Scholar
  6. Arzel P, Barbaroux O (2003) Les Algues, produits, saveurs et santé de la mer. Ed. Libris, 104 ppGoogle Scholar
  7. Athukorala Y, Jung WK, Vasanthan T, Jeon YJ (2006) An anticoagulative polysaccharide from an enzymatic hydrolysate of Ecklonia cava. Carbohydr Polym 66:184–191CrossRefGoogle Scholar
  8. Athukorala Y, Lee KW, Kim SK, Jeon YJ (2007) Anticoagulant activity of marine green and brown algae collected from Jeju Island in Korea. Bioresour Technol 98:1711–1716PubMedCrossRefGoogle Scholar
  9. Bergé JP, Bourgougnon N, Alban S, Pojer F, Chermann JC, Billaudel S, Robert JM, Durand P, Franz G (1999) Antiviral and anticoagulant activities of a water soluble compound extracted from the marine diatom Haslea ostrearia. Planta Med 65:604–609PubMedCrossRefGoogle Scholar
  10. Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative determination of uronic acids. Anal Biochem 54:484–489PubMedCrossRefGoogle Scholar
  11. Bondu S, Deslandes E, Fabre MS, Berthou C, Guangli Y (2010) Carrageenan from Solieria chordalis (Gigartinales): structural analysis and immunological activities of the low molecular weight fractions. Carbohydr Polymers 81:448–460Google Scholar
  12. Borines MG, de Leon RL, Cuello JL (2013) Bioethanol production from the macroalgae Sargassum spp. Bioresour Technol 138:22–29PubMedCrossRefGoogle Scholar
  13. Bouhlal R, Riadi H, Bourgougnon N (2010) Antiviral activities of Morocco seaweeds extracts. Afr J Biotechnol 9:7968–7975Google Scholar
  14. Bouhlal R, Haslin C, Chermann JC, Colliec-Jouault S, Sinquin C, Simon G, Cerantola S, Riadi H, Bourgougnon N (2011) Antiviral activities of sulfated polysaccharides isolated from Sphaerococcus coronopifolius (Rhodophytha, Gigartinales) and Boergeseniella thuyoides (Rhodophyta, Ceramiales). Mar Drugs 7:1187–1209CrossRefGoogle Scholar
  15. Bourgougnon N (2003) Anti-HIV compounds from red seaweeds. In: Fingerman M, Nagabhushanam R (eds) Biomaterials and bioprocessing, vol 9, Recent advances in marine biotechnology. Science, Enfield, pp 16–206Google Scholar
  16. Bourgougnon N, Stiger-Pouvreau V (2011) Chemodiversity and bioactivity within red and brown marine macroalgae along French coasts, Metropole and overseas departments and territories. In: Kim S-K (ed) Handbook of marine macroalgae: Biotechnology and applied phycology. Wiley, Chichester, pp 58–105CrossRefGoogle Scholar
  17. Bourgougnon N, Lahaye M, Chermann JC, Kornprobst JM (1993) Composition and antiviral activities of sulfated polysaccharide from Schizymenia dubyi (Rhodophyta, Gigartinales). Bioorg Med Chem Lett 3:1141–1146CrossRefGoogle Scholar
  18. Cardozo KHM, Guaratini T, Barros MP (2007) Metabolites from algae with economical impact Comp. Biochem Physiol C 146:60–78CrossRefGoogle Scholar
  19. Castro R, Piazzon MC, Zarra I, Leiro J, Noya M, Lamas J (2006) Stimulation of turbot phagocytes by Ulva rigida C. Agardh polysaccharides. Aquaculture 254:9–20CrossRefGoogle Scholar
  20. Cian RE, Martínez-Augustin O, Drago SR (2012) Bioactive properties of peptides obtained by enzymatic hydrolysis from protein byproducts of Porphyra columbina. Food Res Internat 49:364–372CrossRefGoogle Scholar
  21. Crooke WM, Simpson WE (1971) Determination of ammonium in Kjeldahl digests of crops by an automated procedure. J Agric Food Chem 27:1256–1262Google Scholar
  22. Damonte EB, Matulewicz MC, Cerezo AS (2004) Sulfated seaweed polysaccharides as antiviral agents. Curr Med Chem 11:2399–2419PubMedCrossRefGoogle Scholar
  23. Demais H, Brendle J, Jaber M, Laza Anca L (2006a) Exfoliating an intercalated clay, useful in e.g. animal/human feeds, plastification, surface coatings and in nanocomposite, comprises preparing intercalated clay from clay and intercalating compound and lyophilizing in presence of water. French Patent FR2882997Google Scholar
  24. Demais H, Brendle J, Le Deit H, Laza Anca L, Lurton L, Brault D (2006b) Interspersed clay. PCT Patent Application WO2006030075Google Scholar
  25. Dizerbo AH, Herpé E (2007) Liste et répartition des algues marines des côtes françaises de la Manche et de l'Atlantique Iles Normandes incluses Éditions Anaximandre Landernau, 315 ppGoogle Scholar
  26. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  27. Dumay J, Clément N, Morançais M, Fleurence J (2013) Optimization of hydrolysis conditions of Palmaria palmata to enhance R-phycoerythrin extraction. Bioresour Technol 131:21–27PubMedCrossRefGoogle Scholar
  28. El Gamal AA (2010) Biological importance of marine algae. Saudi Pharm J 18:1–25PubMedCentralPubMedCrossRefGoogle Scholar
  29. Fleurence J (1999) Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends Food Sci Technol 10:25–28CrossRefGoogle Scholar
  30. Fleurence J, Massiani L, Guyader O, Mabeau S (1995a) Use of enzymatic cell wall degradation for improvement of protein extraction from Chondrus crispus, Gracilaria verrucosa and Palmaria palmata. J Appl Phycol 7:393–395CrossRefGoogle Scholar
  31. Fleurence J, Le Cœur C, Mabeau S, Maurice M, Landrein A (1995b) Comparison of different extractive procedures for proteins from the edible seaweeds Ulva rigida and Ulva rotundata. J Appl Phycol 7:577–582CrossRefGoogle Scholar
  32. Fleurence J, Morançais M, Dumay J, Decottignies P, Turpin V, Munier M, Garcia-Bueno N, Jaouen P (2012) What are the prospects for using seaweed in human nutrition and for marine animals raised through aquaculture? Trends Food Sci Technol 27:57–61CrossRefGoogle Scholar
  33. Hansen HR, Hector BL, Feldmann J (2003) A qualitative and quantitative evaluation of the seaweed diet of North Ronaldsay sheep. Anim Feed Sci Technol 105:21–28CrossRefGoogle Scholar
  34. Harden EA, Hartline C, Falshaw R, Carnachan SM, Kern ER, Prichard MN (2009) Virucidal activity of polysaccharide extracts from four algal species against herpes simplex virus. Antivir Res 83:282–289PubMedCentralPubMedCrossRefGoogle Scholar
  35. Harnedy PA, FitzGerald RJ (2013) Extraction of protein from the macroalga Palmaria palmata. Food Sci Technol 51:375–382Google Scholar
  36. Heo SJ, Park EJ, Lee KW, Jeon YJ (2005) Anti oxidant activities of enzymatic extracts from brown seaweeds. Bioresour Technol 96:1613–1623PubMedCrossRefGoogle Scholar
  37. Ioannou E, Roussis V (2009) Natural products from seaweeds. Springer, Berlin, pp 51–81Google Scholar
  38. Jaques LB, Ballieux RE, Dietrich CP, Kavanagh LW (1968) A microelectrophoresis method for heparin. Can J Physiol Pharmacol 46:351–360PubMedCrossRefGoogle Scholar
  39. Khanzada AK, Kazi WSTG, Kabir S, Soofia S (2007) Antifungal activity, elemental analysis and determination of total protein of seaweed, Solieria robusta (Greville) Kylin from the coast of Karachi. Pak J Bot 39:931–937Google Scholar
  40. Lahaye M (1991) Marine algae as sources of fibres: determination of soluble and insoluble dietary fibre contents in some “sea vegetables”. J Sci Food Agric 54:587–594CrossRefGoogle Scholar
  41. Lahaye M, Robic A (2007) Structure and functional properties of ulvans, a polysaccharide from green seaweeds. Biomacromolecules 8:1765–1774PubMedCrossRefGoogle Scholar
  42. Lahaye M, Vigouroux J (1992) Liquefaction of dulse (Palmaria palmata (L.) Kuntze) by a commercial enzyme preparation and purified endo-β-1,4-d-xylanase. J Appl Phycol 4:329–337CrossRefGoogle Scholar
  43. Langlois M, Allard JP, Nugier F, Aymard M (1986) A rapid and automated colorimetric assay for evaluating in the sensitivity of Herpes simplex strains to antiviral drugs. J Biol Stand 14:201–211PubMedCrossRefGoogle Scholar
  44. Mayer AMS, Rodríguez AD, Berlinck RGS, Hamann MT (2007) Marine pharmacology in 2003–4: marine compounds with anthelmintic antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action. Comp Biochem Physiol C 145:553–581Google Scholar
  45. McLaren C, Ellis MN, Hunter GA (1983) A colorimetric assay or the measurement of the sensitivity of Herpes simplex viruses to antiviral agents. Antivir Res 3:223–234PubMedCrossRefGoogle Scholar
  46. Mohamed S, Hashim SN, Rahman HA (2012) Seaweeds: a sustainable functional food for complementary and alternative therapy. Trends Food Sci Technol 23:83–96CrossRefGoogle Scholar
  47. Murakami K, Yamaguchi Y, Noda K, Fujii T, Shinohara N, Ushirokawa T, Sugawa-Katayama Y, Katayama M (2011) Seasonal variation in the chemical composition of a marine brown alga, Sargassum horneri (Turner) C. Agardh. J Food Compos Anal 24:231–236CrossRefGoogle Scholar
  48. Peña-Rodríguez A, Mawhinney TP, Ricque-Marie D, Cruz-Suárez LE (2011) Chemical composition of cultivated seaweed Ulva clathrata (Roth) C. Agardh. Food Chem 129:491–498CrossRefGoogle Scholar
  49. Plouguerné E, Le Lann K, Connan S, Jechoux G, Deslandes E, Stiger-Pouvreau V (2006) Spatial and seasonal variations in density, maturity, length and phenolic content of the invasive brown macroalga Sargassum muticum along the coast of Western Brittany (France). Aquat Bot 85:337–344CrossRefGoogle Scholar
  50. Ray B, Lahaye M (1995) Cell-wall polysaccharide from the marine green alga Ulvarigida” (Ulvales, Chlorophyta)—extraction and chemical composition. Carbohydr Res 274:251–261CrossRefGoogle Scholar
  51. Robic A, Sassi JF, Lahaye M (2008) Impact of stabilization treatments of the green seaweed Ulva rotundata (Chlorophyta) on the extraction yield, the physico-chemical and rheological properties of ulvan. Carbohydr Polym 74:344–352CrossRefGoogle Scholar
  52. Samarakoon K, Jeon YJ (2012) Bio-functionalities of proteins derived from marine algae—a review. Food Res Int 48:948–960CrossRefGoogle Scholar
  53. Sassi AB, Harzallah-Skhiri F, Bourgougnon N, Aouni M (2008) Antiviral activity of some Tunisian medicinal plants against Herpes simplex virus type 1. Nat Prod Res 22:53–65PubMedCrossRefGoogle Scholar
  54. Siriwardhana N, Kim KN, Lee KW, Kim SH, Ha JH, Song CB (2008) Optimisation of hydrophilic antioxidant extraction from Hizikia fusiformis by integrating treatments of enzymes, heat and pH control. Int J Food Sci Technol 43:587–596CrossRefGoogle Scholar
  55. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85PubMedCrossRefGoogle Scholar
  56. Stengel DB, Connan S, Popper ZA (2011) Algal chemodiversity and bioactivity: sources of natural variability and implications for commercial application. Biotech Adv 29:483–501Google Scholar
  57. Stern JL, Hagerman AE, Steinberg PD, Mason PK (1996) Phlorotannin–protein interactions. J Chem Ecol 22:1877–1899PubMedCrossRefGoogle Scholar
  58. Tavennec M (2009) La gestion d’une problématique algale dans un secteur hautement touristique, la presqu’île de Rhuys. Masters Thesis, Université de Nantes, 107 ppGoogle Scholar
  59. Turkmen N, Sari F, Velioglu YS (2005) The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chem 93:713–718CrossRefGoogle Scholar
  60. Vo TS, Ngo DH, Ta QV, Kim SK (2011) Marine organisms as a therapeutic source against herpes simplex virus infection. Eur J Pharm Sci 44:11–20PubMedCrossRefGoogle Scholar
  61. Wang T, Jónsdóttir R, Kristinsson HG, Hreggvidsson GO, Jónsson JÓ, Thorkelsson G, Ólafsdóttir G (2010) Enzyme-enhanced extraction of antioxidant ingredients from red algae Palmaria palmata. Food Sci Technol 43:1387–1393Google Scholar
  62. Wang X, Liu X, Wang G (2011) Two stage hydrolysis of invasive algal feedstock for ethanol fermentation. J Integr Plant Biol 53:246–253PubMedCrossRefGoogle Scholar
  63. Wijesinghe WAJP, Jeon Y-J (2012) Enzyme-assistant extraction (EAE) of bioactive components: a useful approach for recovery of industrially important metabolites from seaweeds: a review. Fitoterapia 83:6–12PubMedCrossRefGoogle Scholar
  64. Yaich H, Garna H, Besbes S, Paquot M, Blecker C, Attia H (2011) Chemical composition and functional properties of Ulva lactuca seaweed collected in Tunisia. Food Chem 128:895–901CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • K. Hardouin
    • 1
  • A-S. Burlot
    • 1
  • A. Umami
    • 1
    • 2
  • A. Tanniou
    • 3
  • V. Stiger-Pouvreau
    • 3
  • I. Widowati
    • 2
  • G. Bedoux
    • 1
  • N. Bourgougnon
    • 1
    Email author
  1. 1.Laboratoire de Biotechnologie et Chimie Marines, EA3884, UBS, IUEMVannesFrance
  2. 2.Fakultas Perikanan dan Ilmu Kelautan, Kampus TembalangUniversitas DiponegoroSemarangIndonesia
  3. 3.LEMAR (UMR 6539 CNRS UBO Ifremer IRD), Institut Universitaire Européen de la Mer (IUEM)Université de Bretagne Occidentale (UBO)PlouzanéFrance

Personalised recommendations