Skip to main content
Log in

Development and application of a multiplex qPCR technique to detect multiple microcystin-producing cyanobacterial genera in a Canadian freshwater lake

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The emergence and persistence of complex blooms comprising multiple toxigenic cyanobacteria genera pose significant challenges for water quality management worldwide. The co-occurrence of morphologically indistinguishable toxic and non-toxic strains makes monitoring and control of these noxious organisms particularly challenging. Conventional monitoring approaches are not only incapable of discriminating toxic from non-toxic strains but also have proven to be less sensitive and specific. In this study, a multiplex quantitative real-time polymerase chain reaction (qPCR) approach was developed and tested for its sensitivity and specificity at detecting, differentiating and estimating potentially toxic Anabaena, Microcystis and Planktothrix genotype compositions in environmental samples. The oligonucleotide primers and probes utilized were designed to target portions of the microcystin synthetase (mcy) E gene that encode synthesis of the unique 3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid (ADDA) moiety of microcystins in the three target genera. Laboratory evaluation showed the developed assay to be highly sensitive and specific at detecting and quantifying targeted genera. Indeed, the assay standards for the Anabaena, Microcystis and Planktothrix reactions attained efficiencies above 90 %, with coefficients of determination consistently above 0.99. Analysis of water samples from Missisquoi Bay, Quebec, Canada, resulted in successful detection and quantification of target toxigenic cyanobacteria even when cell numbers were below the detection limit for the conventional microscopy methods. Furthermore, toxigenic Microcystis spp. were found to be the main putative microcystin-producing cyanobacteria in the study lake. The qPCR technique developed in this study therefore offers simultaneous detection, differentiation and quantification of multiple toxigenic cyanobacteria that otherwise cannot be accomplished by current monitoring approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-Tebrineh J, Gehringer MM, Akcaalan R, Neilan BA (2011) A new quantitative PCR assay for the detection of hepatotoxigenic cyanobacteria. Toxicon 57:546–554

    Article  CAS  PubMed  Google Scholar 

  • Al-Tebrineh J, Merrick C, Ryan D, Humpage A, Bowling L, Neilan BA (2012a) Community composition, toxigenicity, and environmental conditions during a cyanobacterial bloom occurring along 1,100 kilometers of the Murray river. Appl Environ Microbiol 78:263–272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Al-Tebrineh J, Pearson LA, Yasar SA, Neilan BA (2012b) A multiplex qPCR targeting hepato- and neurotoxigenic cyanobacteria of global significance. Harmful Algae 15:19–25

    Article  CAS  Google Scholar 

  • Bartram J, Burch M, Falconer IR, Jones G, Kuiper-Goodman T (1999) Situation assessment, planning and management. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water. A guide to their public health consequences, monitoring and management. WHO, E &FN Spon, London, pp 173–200

  • Briand J-F, Jacquet S, Bernard C, Humbert J-F (2003) Health hazards for terrestrial vertebrates from toxic cyanobacteria in surface water ecosystems. Vet Res 34:361–377

    Article  CAS  PubMed  Google Scholar 

  • Christiansen G, Fastner J, Erhard M, Borner T, Dittmann E (2003) Microcystin biosynthesis in Planktothrix: genes, evolution, and manipulation. J Bacteriol 185:564–572

    Google Scholar 

  • Christiansen G, Kurmayer R, Liu Q, Borner T (2006) Transposons inactivate biosynthesis of the nonribosomal peptide microcystin in naturally occurring Planktothrix spp. Appl Environ Microbiol 72:117–123

    Google Scholar 

  • Dittmann E, Neilan BA, Erhard M, von Döhren H, Börner T (1997) Insertional mutagenesis of a peptide synthetase gene that is responsible for hepatotoxin production in the cyanobacterium Microcystis aeruginosa PCC 7806. Mol Microbiol 26:779–787

    Google Scholar 

  • Ernst B, Hitzfeld B, Dietrich D (2001) Presence of Planktothrix sp. and cyanobacterial toxins in Lake Ammersee, Germany and their impact on whitefish (Coregonus lavaretus L.). Environ Toxicol 16:483–488

    Google Scholar 

  • Fewer DP, Halinen K, Sipari H, Bernardová K, Mänttäri M, Eronen E, Sivonen K (2011) Non-autonomous transposable elements associated with inactivation of microcystin gene clusters in strains of the genus Anabaena isolated from the Baltic Sea. Environ Microbiol Rep 3:189–194

    Google Scholar 

  • Findlay DL, Kling HJ (1998) Protocols for measuring biodiversity: phytoplankton in freshwater.www.emanrese.ca/eman/ecotools/protocols/freshwater/phytoplankton/intro.html. Accessed 03 November 2010.

  • Fortin N, Aranda-Rodriguez R, Jing H, Pick F, Bird D, Greer CW (2010) Detection of microcystin-producing cyanobacteria in Missisquoi Bay, Quebec, Canada, using quantitative PCR. Appl Environ Microbiol 76:5105–5112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fujiki H, Suganuma M (1999) Unique features of the okadaic acid activity class of tumor promoters. J Cancer Res Clin Oncol 125:150–155

    Article  CAS  PubMed  Google Scholar 

  • Gobler CJ, Davis TW, Coyne KJ, Boyer GL (2007) Interactive influences of nutrient loading, zooplankton grazing, and microcystin synthetase gene expression on cyanobacterial bloom dynamics in a eutrophic New York lake. Harmful Algae 6:119–133

    Article  CAS  Google Scholar 

  • Halstvedt CB, Rohrlack T, Andersen T, Skulberg O, Edvardsen B (2007) Seasonal dynamics and depth distribution of Planktothrix spp. in Lake Steinsfjorden (Norway) related to environmental factors. J Plankton Res 29:471–482

    Google Scholar 

  • Health Canada, 2012. Guidelines for Canadian recreational water quality, 3rd edn. Water, Air and Climate Change Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, (Catalogue No H129-15/2012E), pp. 161.

  • Hotto AM, Satchwell MF, Berry DL, Gobler CJ, Boyer GL (2008) Spatial and temporal diversity of microcystins and microcystin-producing genotypes in Oneida Lake, NY. Harmful Algae 7:671–681

    Article  CAS  Google Scholar 

  • Jochimsen EM, Carmichael WW, An J, Cardo DM, CooksonST HCEM, Antunes MB, de Melo Filho DA, Lyra TM, Barreto VST, Azevedo SMFO, Jarvis WR (1998) Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. N Engl J Med 338:873–878

    Article  CAS  PubMed  Google Scholar 

  • Koskenniemi K, Lyra C, Rajaniemi-Wacklin P, Jokela J, Sivonen K (2007) Quantitative real-time PCR detection of toxic Nodularia cyanobacteria in the Baltic Sea. Appl Environ Microbiol 73:2173–2179

    Google Scholar 

  • Kurmayer R, Christiansen G, Fastner J, Börner T (2004) Abundance of active and inactive microcystin genotypes in populations of the toxic cyanobacterium Planktothrix spp. Environ Microbiol 6:831–841

    Google Scholar 

  • Kurmayer R, Schober E, Tonk L, Visser PM, Christiansen G (2011) Spatial divergence in the proportions of genes encoding toxic peptide synthesis among populations of the cyanobacterium Planktothrix in European lakes. FEMS Microbiol Lett 317:127–137

    Google Scholar 

  • Lyra C, Suomalainen S, Gugger M, Vezie C, Sundman P, Paulin L, Sivonen K (2001) Molecular characterization of planktic cyanobacteria of Anabaena, Aphanizomenon, Microcystis and Planktothrix genera. Int J Syst Evol Microbiol 51:513–526

    Google Scholar 

  • Mikalsen B, Boison G, Skulberg OM, Fastner J, Davies W, Gabrielsen TM, Rudi K, Jakobsen KS (2003) Natural variation in the microcystin synthetase operon mcyABC and impact on microcystin production in Microcystis strains. J Bacteriol 185:2774–2785

    Google Scholar 

  • Ministère du Développement durable, de l'Environnement et des Parcs (MDDEP) (2012) Portrait de la qualité des eaux de surface au Québec 1999–2008, Québec, Direction du suivi de l'état de l'environnement. 97 pp.

  • Mitrovic SM, Bowling LC, Buckney RT (2001) Vertical disentrainment of Anabaena circinalis in the turbid, freshwater Darling River, Australia: quantifying potential benefits from buoyancy. J Plankton Res 23:47–55

    Google Scholar 

  • Nadkarni MA, Martin FE, Jacques NA, Hunter N (2002) Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 148:257–266

    CAS  PubMed  Google Scholar 

  • Ngwa F, Madramootoo C, Jabaji S (2012) Monitoring toxigenic Microcystis strains in the Missisquoi bay, Quebec, by PCR targeting multiple toxic gene loci. Environ Toxicol. doi:10.1002/tox.21770

  • Nishizawa T, Asayama M, Fujii K, K-i H, Shirai M (1999) Genetic analysis of the peptide synthetase genes for a cyclic heptapeptide microcystin in Microcystis spp. J Biochem 126:520–529

    Google Scholar 

  • Nubel U, GarciaPichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 63:3327–3332

    CAS  PubMed Central  PubMed  Google Scholar 

  • Okello W, Ostermaier V, Portmann C, Gademann K, Kurmayer R (2010) Spatial isolation favours the divergence in microcystin net production by Microcystis in Ugandan freshwater lakes. Water Res 44:2803–2814

    Google Scholar 

  • Otten TG, Xu H, Qin B, Zhu G, Paerl HW (2012) Spatiotemporal patterns and ecophysiology of toxigenic Microcystis blooms in Lake Taihu, China: implications for water quality management. Environ Sci Technol 46:3480–3488

    Google Scholar 

  • Ouahid Y, del Campo F (2009) Typing of toxinogenic microcystis from environmental samples by multiplex PCR. Appl Microbiol Biotechnol 85:405–412

    Google Scholar 

  • Ouellette AJ, Wilhelm SW (2003) Toxic cyanobacteria: the evolving molecular toolbox. Front Ecol Environ 1:359–366

    Article  Google Scholar 

  • Ouellette A, Handy S, Wilhelm S (2006) Toxic Microcystis is widespread in Lake Erie: PCR detection of toxin genes and molecular characterization of associated cyanobacterial communities. Microb Ecol 51:154–165

    Google Scholar 

  • Paulino S, Sam-Bento F, Churro C, Alverca E, Dias E, Valério E, Pereira P (2009) The Estela Sousa e Silva Algal Culture Collection: a resource of biological and toxicological interest. Hydrobiologia 636:489–492

    Article  Google Scholar 

  • Rantala A, Rajaniemi-Wacklin P, Lyra C, Lepisto L, Rintala J, Mankiewiez-Boczek J, Sivonen K (2006) Detection of microcystin-producing cyanobacteria in Finnish lakes with genus-specific microcystin synthetase gene E (mcyE) PCR and associations with environmental factors. Appl Environ Microbiol 72:6101–6110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rinta-Kanto JM, Saxton MA, DeBruyn JM, Smith JL, Marvin CH, Krieger KA, Sayler GS, Boyer GL, Wilhelm SW (2009) The diversity and distribution of toxigenic Microcystis spp. in present day and archived pelagic and sediment samples from Lake Erie. Harmful Algae 8:385–394

    Google Scholar 

  • Rivasseau C, Racaud P, Deguin A, Hennion M-C (1999) Evaluation of an ELISA kit for the Monitoring of microcystins (cyanobacterial toxins) in water and algae environmental samples. Environ Sci Technol 33:1520–1527

    Article  CAS  Google Scholar 

  • Rosen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    Google Scholar 

  • Rouhiainen L, Vakkilainen T, Siemer BL, Buikema W, Haselkorn R, Sivonen K (2004) Genes coding for hepatotoxic heptapeptides (microcystins) in the cyanobacterium Anabaena strain 90. Appl Environ Microbiol 70:686–692

    Google Scholar 

  • Rueckert A, Cary SC (2009) Use of an armored RNA standard to measure microcystin synthetase E gene expression in toxic Microcystis sp. by reverse transcription QPCR. Limnol Oceanogr Methods 7:509–520

    Google Scholar 

  • Savichtcheva O, Debroas D, Kurmayer R, Villar C, Jenny JP, Arnaud F, Perga ME, Domaizon I (2011) Quantitative PCR enumeration of total/toxic Planktothrix rubescens and total cyanobacteria in preserved DNA isolated from lake sediments. Appl Environ Microbiol 77:8744–8753

    Google Scholar 

  • Sipari H, Rantala-Ylinen A, Jokela J, Oksanen I, Sivonen K (2010) Development of a chip assay and quantitative PCR for detecting microcystin synthetase E Gene expression. Appl Environ Microbiol 76:3797–3805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sivonen K, Börner T (2008) Bioactive compounds produced by cyanobacteria. In: Herrero A, Flores E (eds) The cyanobacteria: molecular biology, genomics and evolution. Caister Academic, Norfolk, pp 159–197

    Google Scholar 

  • Sivonen K, Jones G (1999) Cyanobacterial toxins. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. E&FN Spon, London, pp 41–111

    Google Scholar 

  • Spoof L, Vesterkvist P, Lindholm T, Meriluoto J (2003) Screening for cyanobacterial hepatotoxins, microcystins and nodularin in environmental water samples by reversed-phase liquid chromatography–electrospray ionisation mass spectrometry. J Chromatogr A 1020:105–119

    Article  CAS  PubMed  Google Scholar 

  • Srivastava A, Choi G-G, Ahn C-Y, Oh H-M, Ravi AK, Asthana RK (2012) Dynamics of microcystin production and quantification of potentially toxigenic Microcystis sp. using real-time PCR. Water Res 46:817–827

    Google Scholar 

  • Te SH, Gin KY-H (2011) The dynamics of cyanobacteria and microcystin production in a tropical reservoir of Singapore. Harmful Algae 10:319–329

    Article  CAS  Google Scholar 

  • Tillett D, Dittmann E, Erhard M, von Döhren H, Börner T, Neilan B (2000) Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide–polyketide synthetase system. Chem Biol 7:753–764

    Google Scholar 

  • Tomioka N, Nagai T, Kawasaki T, Imai A, Matsushige K, Kohata K (2008) Quantification of Microcystis in a eutrophic lake by simple DNA extraction and SYBR green real-time PCR. Microbes Environ 23:306–312

    Google Scholar 

  • Vaitomaa J, Rantala A, Halinen K, Rouhiainen L, Tallberg P, Mokelke L, Sivonen K (2003) Quantitative real-time PCR for determination of microcystin synthetase E copy numbers for Microcystis and Anabaena in lakes. Appl Environ Microbiol 69:7289–7297

    Google Scholar 

  • Valério E, Chambel L, Paulino S, Faria N, Pereira P, Tenreiro R (2010) Multiplex PCR for detection of microcystins-producing cyanobacteria from freshwater samples. Environ Toxicol 25:251–260

    Article  PubMed  Google Scholar 

  • Vezie C, Brient L, Sivonen K, Bertru G, Lefeuvre JC, Salkinoja-Salonen M (1998) Variation of microcystin content of cyanobacterial blooms and isolated strains in Lake Grand-Lieu (France). Microb Ecol 35:126–135

    Article  CAS  PubMed  Google Scholar 

  • Via-Ordorika L, Fastner J, Kurmayer R, Hisbergues M, Dittmann E, Komarek J, Erhard M, Chorus I (2004) Distribution of microcystin-producing and non-microcystin-producing Microcystis sp. in European freshwater bodies: detection of microcystins and microcystin genes in individual colonies. Syst Appl Microbiol 27:592–602

    Google Scholar 

  • Watzin MC, Miller EB, Shambaugh AD, Kreider MA (2006) Application of the WHO alert level framework to cyanobacterial monitoring of Lake Champlain, Vermont. Environ Toxicol 21:278–288

    Article  CAS  PubMed  Google Scholar 

  • Welker M, von Döhren H (2006) Cyanobacterial peptides; Nature's own combinatorial biosynthesis. FEMS Microbiol Rev 30:530–563

    Article  CAS  PubMed  Google Scholar 

  • Wood SA, Heath MW, Holland PT, Munday R, McGregor GB, Ryan KG (2010) Identification of a benthic microcystin-producing filamentous cyanobacterium (Oscillatoriales) associated with a dog poisoning in New Zealand. Toxicon 55:897–903

    Article  CAS  PubMed  Google Scholar 

  • Zamor RM, Glenn KL, Hambright KD (2012) Incorporating molecular tools into routine HAB monitoring programs: using qPCR to track invasive Prymnesium. Harmful Algae 15:1–70

    Google Scholar 

Download references

Acknowledgements

The authors thank T. Coplay and R. Chamoun for helpful discussions on assay design and optimization. This research was supported by Natural Sciences and Engineering Research Council of Canada (NSERC) grants to C. Madramootoo and S. Jabaji and the Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT) grant to C. Madramootoo. Hedy Kling of Algal Taxonomy and Ecology is gratefully acknowledged for assistance with phytoplankton taxonomy and enumeration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felexce F. Ngwa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ngwa, F.F., Madramootoo, C.A. & Jabaji, S. Development and application of a multiplex qPCR technique to detect multiple microcystin-producing cyanobacterial genera in a Canadian freshwater lake. J Appl Phycol 26, 1675–1687 (2014). https://doi.org/10.1007/s10811-013-0199-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-013-0199-9

Keywords

Navigation