Journal of Applied Phycology

, Volume 26, Issue 2, pp 1231–1242 | Cite as

A molecular-assisted floristic survey of crustose brown algae (Phaeophyceae) from Malaysia and Lombok Island, Indonesia based on rbcL and partial cox1 genes

  • Sze-Wan Poong
  • Phaik-Eem Lim
  • Siew-Moi Phang
  • H. Sunarpi
  • John A. West
  • Hiroshi Kawai


Studies on the crustose brown algae are relatively few despite a long history of studies conducted since the 1800s, with temperate species forming the bulk of these studies. There is a need for more focus on crustose brown algae particularly in the tropics as they are generally different from those in the temperate regions. Taxonomic confusion arising from morphological simplicity largely dependent on the reproductive structures and overlap in morpho-anatomical features among species necessitates the use of molecular techniques. This study is dedicated to a better understanding of the diversity of these understudied algae in the Indo–Malay region. Specimens collected from Peninsular Malaysia, Sabah (Borneo) and Lombok Island in Indonesia were identified using molecular markers from the plastid rubisco large subunit (rbcL) and mitochondrial cytochrome c oxidase subunit 1 (cox1) genes in tandem with morphology and anatomy. Three Mesospora spp., two putative Diplura spp. and the cosmopolitan Neoralfsia expansa were identified in this study, including a new record of Mesospora negrosensis for Malaysia. Despite their morpho-anatomical similarities, Mesospora and Diplura occur in widely divergent clades within the brown algae, the former in the Mesosporaceae in the Ralfsiales, the latter in an unclassified clade sister to the Ishigeales. All six species occurred both in Malaysia and Lombok Island except for M. elongata and M. negrosensis, respectively. The rbcL marker performed better in the elucidation of phylogeny among the brown algal orders, whereas cox1-5′ is more suited as a barcoding marker for species level identification.


Diplura Diversity Indo–Malay region Mesospora Mesospora negrosensis Neoralfsia expansa New record Ralfsiales 



We are indebted to the University of Malaya for its financial support through the High Impact Research grant (UM.C/625/1/HIR/088) awarded to P.-E. Lim. This study is also supported by the University of Malaya's Postgraduate Research (PV082-2011B) to S.-W. Poong. The authors thank the referees for their comments on the manuscript.


  1. Abbott IA, Hollenberg GJ (1976) Marine algae of California. Stanford University Press, Stanford, CA, 827 ppGoogle Scholar
  2. Agardh JG (1847) Nya alger från Mexico. Öfversigt af Kong Vetenskaps-Akad Förhandl 4:5–17Google Scholar
  3. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Second international symposium on information theory. Akademia Kiado, Budapest, pp 267–281Google Scholar
  4. Bittner L, Payri C, Couloux A, Cruaud C, de Reviers B, Rousseau F (2008) Molecular phylogeny of the Dictyotales and their position within the Phaeophyceae, based on nuclear, plastid and mitochondrial DNA sequence data. Mol Phylogenet Evol 49:211–226PubMedCrossRefGoogle Scholar
  5. Buchanan J (2005) The crustose brown algae of New Zealand: a taxonomic study. Master thesis, Victoria University of WellingtonGoogle Scholar
  6. Cianciola EN, Popolizio TR, Schneider CW, Lane CE (2010) Using molecular-assisted alpha taxonomy to better understand red algal biodiversity in Bermuda. Diversity: 946–958Google Scholar
  7. Daugbjerg N, Andersen RA (1997) Phylogenetic analyses of the rbcL sequences from haptophytes and heterokont algae suggest their chloroplasts are unrelated. Mol Biol Evol 14:1242–1251PubMedCrossRefGoogle Scholar
  8. Fletcher RL (1987) Seaweeds of the British Isles. Volume 3, Fucophyceae (Phaeophyceae): Part 1. British Museum (Natural History), LondonGoogle Scholar
  9. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299PubMedGoogle Scholar
  10. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acid Symp Ser 41:95–98Google Scholar
  11. Hoeksema BW (2007) Delineation of the Indo-Malayan centre of maximum marine biodiversity: the Coral Triangle. In: Biogeography, time, and place: distributions, barriers, and islands. Springer, New York, pp 117–178Google Scholar
  12. Hollenberg GJ (1969) An account of the Ralfsiaceae (Phaeophyta) of California. J Phycol 5:290–301CrossRefGoogle Scholar
  13. Jaasund E (1965) Aspects of the marine algal vegetation of North Norway. Bot Gothoburg 4:1–174Google Scholar
  14. Jobb G, von Haeseler A, Strimmer K (2004) TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol 4:18–26PubMedCentralPubMedCrossRefGoogle Scholar
  15. Kaehler S (1994) The non-coralline epilithic encrusting algae of Hong Kong. Asian Mar Biol 11:41–54Google Scholar
  16. Kaehler S (1998) The non-coralline epilithic encrusting algae of Hong Kong: II. Additions and identification. Asian Mar Biol 15:1–17Google Scholar
  17. Kain JM, Buchanan J, Boo SM, Lee KM (2010) Colpomenia bullosa crust masquerading as Ralfsia verrucosa (Phaeophyceae) in southeast Australia. Phycologia 49:617–627CrossRefGoogle Scholar
  18. Kawai H, Sasaki H (2004) Morphology, life history and molecular phylogeny of Stschapovia flagellaris (Tilopteridales, Phaeophyceae) and the erection of the Stschapoviaceae fam. nov. J Phycol 40:1156–1169CrossRefGoogle Scholar
  19. Kawai H, Sasaki H, Maeba S, Henry EC (2005) Morphology and molecular phylogeny of Phaeostrophion irregulare (Phaeophyceae) with a proposal for Phaeostrophiaceae fam. nov., and a review of Ishigeaceae. Phycologia 44:169–182CrossRefGoogle Scholar
  20. Kogame K, Horiguchi T, Masuda M (1999) Phylogeny of the order Scytosiphonales (Phaeophyceae) based on DNA sequences of rbcL, partial rbcS, and partial LSU nrDNA. Phycologia 38:496–502CrossRefGoogle Scholar
  21. Krishnamurthy V, Baluswami M (1986) On Mesospora schmidtii Weber-van Bosse (Ralfsiaceae, Phaeophyceae). Curr Sci 55:571–572Google Scholar
  22. Kucera H, Saunders GW (2012) A survey of Bangiales (Rhodophyta) based on multiple molecular markers reveals cryptic diversity. J Phycol 48:869–882CrossRefGoogle Scholar
  23. Lane CE, Lindstrom SC, Saunders GW (2007) A molecular assessment of northeast Pacific Alaria species (Laminariales, Phaeophyceae) with reference to the utility of DNA barcoding. Mol Phylogenet Evol 44:634–648PubMedCrossRefGoogle Scholar
  24. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948PubMedCrossRefGoogle Scholar
  25. León-Alvarez D, González-González J (2003) The morphological distinction of Ralfsia expansa and R. hancockii (Ralfsiaceae, Phaeophyta) from Mexico. Phycologia 42:613–621CrossRefGoogle Scholar
  26. León-Alvarez D, Norris JN (2005) Terminology and position of reproductive structures in crustose brown algae: misapplication, confusion and clarification. Cryptogamie Algol 26:91–102Google Scholar
  27. Lim PE, Sakaguchi M, Hanyuda T, Kogame K, Phang SM, Kawai H (2007) Molecular phylogeny of crustose brown algae (Ralfsiales, Phaeophyceae) inferred from rbcL sequences resulting in the proposal for Neoralfsiaceae fam. nov. Phycologia 46:456–466CrossRefGoogle Scholar
  28. Lim PE, Kawai H, Phang SM (2008) Some Ralfsiales from Malaysia. In: Phang SM, Lewmanomont K, Lim PE (eds) Taxonomy of Southeast Asian seaweeds. Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur, pp 77–81Google Scholar
  29. Nakamura J (1972) A proposal on the classification of the Phaeophyta. In: Abbott IA, Kurogi M (eds) Contributions to the systematics of benthic marine algae of the North Pacific. Japanese Society of Phycology, Japan, pp 147–155Google Scholar
  30. Ni-Ni-Win HT, Draisma SG, Furnari G, Meinesz A, Kawai H (2011) Padina ditristromatica sp. nov. and Padina pavonicoides sp. nov. (Dictyotales, Phaeophyceae), two new species from the Mediterranean Sea based on morphological and molecular markers. Eur J Phycol 46:327–341CrossRefGoogle Scholar
  31. Pedroche F, Silva P, Aguilar-Rosas L, Dreckmann K, Aguilar-Rosas R (2008) Catálogo de las algas bentónicas del Pacífico de México II. Phaeophycota. Universidad Autónoma Metropolitana, México, DF and University of California, Berkeley, 146 ppGoogle Scholar
  32. Phang SM, Wong CL, Lim PE, Ooi JLS, Gan SY, Melor I, Yeong HY, Emienour MM (2007) Seaweed diversity in Malaysia. In: Chua LSL, Kirton LG, Saw LG (eds) Status of biological diversity in Malaysia and threat assessment of plant species in Malaysia. Forest Research Institute Malaysia, pp 185–210Google Scholar
  33. Poong SW, Lim PE, Phang SM, Gerung GS, Kawai H (2013) Mesospora elongata sp. nov. (Ralfsiales, Phaeophyceae), a new crustose brown algal species from the Indo-Pacific region. Phycologia 52:74–81CrossRefGoogle Scholar
  34. Reviers B de, Rousseau F, Draisma SGA (2007) Classification of the Phaeophyceae from past to present and current challenges. In: Brodie J, Lewis J (eds) Unravelling the algae: the past, present, and future of algal systematics, vol 75. CRC Press Taylor & Francis Group, Boca Raton, FL, pp 267–284Google Scholar
  35. Ribera MA, Gómez-Garreta A, Gallardo T, Cormaci M, Furnari G, Giaccone G (1992) Check-list of Mediterranean seaweeds: I. Fucophyceae (Warming 1884). Bot Mar 35:109–130CrossRefGoogle Scholar
  36. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  37. Rull Lluch J (2002) Marine benthic algae of Namibia. Sci Mar 66:5–256CrossRefGoogle Scholar
  38. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464CrossRefGoogle Scholar
  39. Silberfeld T, Racault M-FL, Fletcher RL, Couloux A, Rousseau F, de Reviers B (2011) Systematics and evolutionary history of pyrenoid-bearing taxa in brown algae (Phaeophyceae). Eur J Phycol 46:361–377CrossRefGoogle Scholar
  40. Swofford DL (2002) Phylogenetic analysis using parsimony (* and other methods). Version 4. Sinauer Associates, Sunderland, MAGoogle Scholar
  41. Tan J, Lim P-E, Phang S-M (2013) Phylogenetic relationship of Kappaphycus Doty and Eucheuma J. Agardh (Solieriaceae, Rhodophyta) in Malaysia. J Appl Phycol 25:13–29CrossRefGoogle Scholar
  42. Tanabe AS (2007) Kakusan: a computer program to automate the selection of a nucleotide substitution model and the configuration of a mixed model on multilocus data. Mol Ecol Notes 7:962–964CrossRefGoogle Scholar
  43. Tanaka J, Chihara M (1980) Taxonomic study of the Japanese crustose brown algae (2). Ralfsia (Ralfsiaceae, Ralfsiales), part 1. J Jpn Bot 55:225–236Google Scholar
  44. Tanaka J, Chihara M (1981) Taxonomic study of Japanese crustose brown algae (5). Endoplura and Diplura (Ralfsiaceae, Ralfsiales). J Jpn Bot 56:153–160Google Scholar
  45. Weber-van Bosse A (1911) Notice sur quelques genres nouveaux d'algues de l'Archipel Malaisien. Ann Jardin Bot Buitenzorg 24:25–33Google Scholar
  46. Weber-van Bosse A (1913) Liste des algues du Siboga. I. Myxophyceae, Chlorophyceae, Phaeophyceae. Siboga-Exped Monogr 59a:1–186Google Scholar
  47. West JA, Calumpong HP (1996) Mesospora negrosensis sp. nov. (Phaeophyta) from the Philippines. Philipp Sci 33:5–15Google Scholar
  48. Wiens JJ (2009) Paleontology, genomics, and combined-data phylogenetics: can molecular data improve phylogeny estimation for fossil taxa? Syst Biol 58:87–99PubMedCrossRefGoogle Scholar
  49. Womersley HBS (1987) The marine benthic flora of southern Australia: Part II. South Australian Government Printing Division, AdelaideGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Sze-Wan Poong
    • 1
    • 2
  • Phaik-Eem Lim
    • 1
    • 2
  • Siew-Moi Phang
    • 1
    • 2
  • H. Sunarpi
    • 3
  • John A. West
    • 4
  • Hiroshi Kawai
    • 5
  1. 1.Institute of Biological Sciences, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia
  2. 2.Institute of Ocean and Earth SciencesUniversity of MalayaKuala LumpurMalaysia
  3. 3.Faculty of Science and MathematicsMataram UniversityMataramIndonesia
  4. 4.School of BotanyUniversity of MelbourneMelbourneAustralia
  5. 5.Kobe University Research Center for Inland SeasKobeJapan

Personalised recommendations