Journal of Applied Phycology

, Volume 25, Issue 3, pp 795–803 | Cite as

Growth characteristics and reproductive capability of green tide algae in Rudong coast, China

  • Jianheng Zhang
  • Yuanzi Huo
  • Kefeng Yu
  • Qunfang Chen
  • Qing He
  • Wei Han
  • Liping Chen
  • Jiachun Cao
  • Dingji Shi
  • Peimin He
Article

Abstract

Since 2007, green tides have occurred along the coast of the Yellow Sea, China. The green tide extended to 50,000 km2 (floating area) within 2–3 months and the calculated covering area was about 400 km2 in 2010. These facts implied that the growth and reproduction of the dominant species Ulva prolifera were stimulated. We observed that 1 cm2 blades (single layer) released 2.84–6.62 × 106 spores or 1.14–2.65 × 107 gametes and that 91.6–96.4 % of them germinated into younger seedlings. This means that, in theory, 1 g (fresh weight) of blades was able to produce about 2.8 × 108–2.7 × 109 new younger seedlings. From 2009 to 2011, the growth rate of green tide algae was measured in situ in enclosure experiments in Rudong coast, Jiangsu Province and the growth curve of the algae was divided into four phases: lag phase, accelerated phase, stationary phase, and decline phase. Usually, the average daily specific relative growth rate was about 23.2–23.6 % d−1 for a whole growth period, and it reached up to 56.2 % d−1 in the accelerated phase. Correspondingly, the morphology of green tide algae in enclosures also showed periodic variation as follows: blades presented new filamentous branches from old thallus in the lag phase, longer filamentous branches in the accelerated phase, tubular and cystic blades in the stationary phase, and folded blades in the decline stage. Those studies may be useful for understanding the green tide blooming mechanism.

Keywords

Enclosure experiment Green tide Ulva Chlorophyta Growth periodicity Morphological change Reproductive capability 

Notes

Acknowledgments

This study was supported by the Ocean Public Welfare Scientific Research Project, China (201205010) and (201105023), the Project for Excellence Disciplines Leader (08XD14037), International Cooperation Project (08540702600), Science Foundation for The Excellent Youth Scholars (SSC10001), Doctoral Scientific Research Foundation (A-2400-10-0130), National Science and Technology Support Program (2012BAC07B03), and the establishment and application of the technique to detect the green tide proliferate in the South Yellow Sea (MATHAB20120209). Thanks are also due to anonymous reviewers for their valuable comments and suggestions on the manuscript.

References

  1. Arnon DI (1949) Copper enzymes in isolated chloroplast. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15PubMedCrossRefGoogle Scholar
  2. Berger R, Henriksson E, Kautsky L, Malm T (2003) Effects of filamentous algae and deposited matter on the survival of Fucus vesiculosus L. germlings in the Baltic Sea. Aquat Ecol 37:1–11CrossRefGoogle Scholar
  3. Blomster J, Bäck S, Fewer DP, Kiirikki M, Lehvo A, Maggs CA, Stanhope MJ (2002) Novel morphology in Enteromorpha (Ulvophyceae) forming green tides. Am J Bot 89:1756–1763PubMedCrossRefGoogle Scholar
  4. Charlier RH, Morand P, Finkl CW, Thys A (2007) Green tides on the Brittany coasts. Environ Res Eng Manage 3:52–59Google Scholar
  5. Dan A, Hiraoka M, Ohno M, Critchley AT (2002) Observations on the effect of salinity and photon fluence rate on the induction of sporulation and rhizoid formation in the green alga Enteromorpha prolifera (Müller) J. Agardh (Chlorophyta, Ulvales). Fish Sci 68:1182–1188CrossRefGoogle Scholar
  6. Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929PubMedCrossRefGoogle Scholar
  7. Fletcher RL (1996a) The British Isles. In: Schramm W, Nienhuis PH (eds) Marine benthic vegetation: recent changes, the effects of eutrophication. Springer, Berlin, pp 150–223Google Scholar
  8. Fletcher RL (1996b) The occurrence of ‘green tides’ a review. In: Schramm W, Nienhuis PH (eds) Marine benthic vegetation: recent changes and the effects of eutrophication. Springer, Berlin, pp 7–43CrossRefGoogle Scholar
  9. Franz DR, Friedman I (2002) Effects of a macroalgal mat (Ulva lactuca) on estuarine sand flat copepods: an experimental study. J Exp Mar Biol Ecol 271:209–226CrossRefGoogle Scholar
  10. Gao S, Chen XY, Yi QQ, Wang GC, Pan GH, Lin AP, Peng G (2010) A strategy for the proliferation of Ulva prolifera, main causative species of green tides, with formation of sporangia by fragmentation. PLoS One 5(1):e8571PubMedCrossRefGoogle Scholar
  11. Hallegraeff GM (1993) A review of harmful algal blooms and their apparent global increase. Phycologia 32:9–99CrossRefGoogle Scholar
  12. Hernandez I, Peralta G, Perez-Llorens JL, Vergara JJ (1997) Biomass and dynamics of growth of Ulva species in Palmones River estuary. J Phycol 33:764–772CrossRefGoogle Scholar
  13. Hiraoka M, Ohno M, Kawaguchi S, Yoshida G (2004) Crossing test among floating Ulva thalli forming ‘green tide’ in Japan. Hydrobiologia 512:239–245CrossRefGoogle Scholar
  14. Hu CM, He MX (2008) Origin and offshore extent of floating algae in Olympic sailing area. Eos Trans AGU 89(33):302CrossRefGoogle Scholar
  15. Hu CM, Li DQ, Chen CS, Ge JZ, Muller-Karger FE, Liu JP, Yu F, He MX (2010) On the recurrent Ulva prolifera blooms in the Yellow Sea and East China Sea. J Geophys Res 115:C05017CrossRefGoogle Scholar
  16. Kamermans P, Malta EJ, Verschuure JM, Lentz LF, Schrijvers L (1998) Role of cold resistance and burial for winter survival and spring initiation of an Ulva spp. (Chlorophyta) bloom in a eutrophic lagoon (Veerse Meer lagoon, The Netherlands). Mar Biol 131:45–51CrossRefGoogle Scholar
  17. Largo DB, Sembrano J, Hiraoka M, Ohno M (2004) Taxonomic and ecological profile of ‘green tide’ species of Ulva (Ulvales, Chlorophyta) in central Philippines. Hydrobiologia 512:247–253CrossRefGoogle Scholar
  18. Leliaert F, Zhang XW, Ye NH, Malta EJ, Engelen AH, Mineur F, Verbruggen H, Clerck OD (2009) Identity of the Qingdao algal bloom. Phycol Res 57:147–151CrossRefGoogle Scholar
  19. Lin AP, Shen SD, Wan JW, Yan BL (2008) Reproduction diversity of Enteromorpha prolifera. J Integr Plant Biol 50:622–629PubMedCrossRefGoogle Scholar
  20. Lin AP, Wang C, Qiao HJ, Pan GH, Wang GC, Song LY, Wang ZY, Son S, Zhou BC (2009) Study on the photosynthetic performances of Enteromorpha prolifera collected from the surface and bottom of the sea of Qingdao sea area. Chinese Sci Bull 54:399–404 (in Chinese with English abstract)CrossRefGoogle Scholar
  21. Liu DY, Keesing JK, Xing QG, Shi P (2009) World’s largest macroalgal bloom caused by expansion of seaweed aquaculture in China. Mar Pollut Bull 5:888–895CrossRefGoogle Scholar
  22. Lotze HK, Schramm W, Schories D, Worm B (1999) Control of macroalgal blooms at early developmental stages: Pilayella littoralis versus Enteromorpha spp. Oecologia 119:46–54CrossRefGoogle Scholar
  23. Lüning K, Kadel P, Pang SJ (2008) Control of reproduction rhythmicity by environmental and endogenous signals in Ulva pseudocurvata (Chlorophyta). J Phycol 44:866–873CrossRefGoogle Scholar
  24. McAvoy KM, Klug JL (2005) Positive and negative effects of reverine input on the estuarine green alga Ulva intestinalis (syn. Enteromorpha intestinalis) (Linneaus). Hydrobiologia 545:1–9CrossRefGoogle Scholar
  25. McGlathery KJ (2001) Macroalgal blooms contribute to the decline of seagrass in nutrient-enriched coastal waters. J Phycol 37:453–456CrossRefGoogle Scholar
  26. Morand P, Briand X (1996) Excessive growth of macroalgae: a symptom of environmental disturbance. Bot Mar 39:491–516CrossRefGoogle Scholar
  27. Nelson TA, Lee A (2001) A manipulative experiment demonstrates that blooms of the macroalga Ulvaria obscura can reduce eelgrass shoot density. Aquat Bot 71:149–154CrossRefGoogle Scholar
  28. Nelson TA, Nelson AV, Tjoelker M (2003) Seasonal patterns in ulvoid algal biomass, productivity, and key environmental factors in the Northeast Pacific. Bot Mar 46:263–327CrossRefGoogle Scholar
  29. Nelson TA, Haberlin K, Nelson AV, Ribarich H, Hotchkiss R, Van Alstyne KL, Buckingham L, Simunds DJ, Fredrickson K (2008) Ecological and physiological controls of species composition in green macroalgal blooms. Ecology 89:1287–1298PubMedCrossRefGoogle Scholar
  30. Ott FD (1965) Synthetic media and techniques for the xenic cultivation of marine algae and flagellate. Virginia J Sci 16:205–218Google Scholar
  31. Raberg S, Berger-Jonsson R, Bjorn A, Graneli E, Kautsky L (2005) Effects of Pilayella littoralis on Fucus vesiculosus recruitment: implications for community composition. Mar Ecol Prog Ser 289:131–139CrossRefGoogle Scholar
  32. Santelices B, Paya I (1989) Digestion survival of algae: some ecological comparisons between free spores and propagules in fecal pellets. J Phycol 25:693–699CrossRefGoogle Scholar
  33. Schramm W (1999) Factors influencing seaweed responses to eutrophication: some results from EU-project EUMAC. J Appl Phycol 11:69–78CrossRefGoogle Scholar
  34. Shimada S, Hiraoka M, Nabata S, Lima M, Masuda M (2003) Molecular phylogenetic analyses of the Japanese Ulva and Enteromorpha (Ulvales, Ulvophyceae), with special reference to the free-floating Ulva. Phycol Res 51:99–108CrossRefGoogle Scholar
  35. State Oceanic Administration People’s Republic of China (SOA) (2011) Marine environment quality status of the national sea waters in 2011. Available from http://www.soa.gov.cn/soa/hygbml/hjgb/hjgb/webinfo/2012/06/1340488547097174.htm
  36. Tan IH, Blomster J, Hansen G, Leskinen E, Maggs CA, Mann DG, Sluiman HJ, Stanhope MJ (1999) Molecular phylogenetic evidence for a reversible morphogenetic switch controlling the gross morphology of two common genera of green seaweeds, Ulva and Enteromorpha. Mol Biol Evol 16:1011–1018PubMedCrossRefGoogle Scholar
  37. Taylor R, Fletcher RL, Raven JA (2001) Preliminary studies on the growth of selected ‘green tide’ algae in laboratory culture: effects of irradiance, temperature, salinity and nutrients on growth rate. Bot Mar 44:327–333CrossRefGoogle Scholar
  38. Wang JW, Yan BL, Lin AP, Hu JP, Shen SD (2007) Ecological factor research on the growth and induction of spores release in Enteromorpha prolifera (Chlorophyta). Mar Sci Bull 26:60–65 (in Chinese with English abstract)Google Scholar
  39. Wang XH, Li L, Bao X, Zhao LD (2009) Economic cost of an algae bloom cleanup in China’s 2008 Olympic sailing venue. Eos Trans AGU 90:238–239CrossRefGoogle Scholar
  40. Wang JF, Jiang P, Cui YL, Li N, Wang MQ, Lin HZ, He PM, Qin S (2010) Molecular analysis of green-tide-forming macroalgae in the Yellow Sea. Aquat Bot 93:25–31CrossRefGoogle Scholar
  41. Worm BK, Lotze H, Sommer U (2001) Algal propagule banks modify competition, consumer and resource control on Baltic rocky shores. Oecologia 128:281–293CrossRefGoogle Scholar
  42. Ye NH, Zhuang ZM, Jin XS, Wang QY, Zhang XW, Li DM, Wang HX, Mao YZ, Jiang ZJ, Li B, Xue ZX (2008) China is on the track tackling Enteromorpha spp. forming green tide. Nature Precedings hdl: 10101/npre.2008.2352.1
  43. Ye NH, Zhang XW, Mao YZ, Liang CW, Xu D, Zhou J, Zhuang ZM, Wang QY (2011) ‘Green tides’ are overwhelming the coastline of our blue planet: taking the world’s largest example. Ecol Res 26:477–485CrossRefGoogle Scholar
  44. Zhang XW, Mao YZ, Zhuang ZM, Liu SF, Wang QY, Ye NH (2008) Morphological characteristics and molecular phylogenetic analysis of green tide Enteromorpha sp. occurred in the Yellow Sea (in Chinese with English abstract). J Fish Sci China 15:822–829Google Scholar
  45. Zhang XW, Wang HX, Mao YZ, Liang CW, Zhuang ZM, Wang QY, Ye NH (2010) Somatic cells serve as a potential propagule bank of Enteromorpha prolifera forming a green tide in the Yellow Sea, China. J Appl Phycol 22:173–180CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Jianheng Zhang
    • 1
    • 2
  • Yuanzi Huo
    • 1
    • 2
    • 3
  • Kefeng Yu
    • 1
    • 2
  • Qunfang Chen
    • 1
    • 2
  • Qing He
    • 1
    • 2
  • Wei Han
    • 1
    • 2
  • Liping Chen
    • 1
    • 2
  • Jiachun Cao
    • 1
    • 2
  • Dingji Shi
    • 1
    • 2
  • Peimin He
    • 1
    • 2
  1. 1.College of Fisheries and Life ScienceShanghai Ocean UniversityShanghaiPeople’s Republic of China
  2. 2.Institute of Marine ScienceShanghai Ocean UniversityShanghaiPeople’s Republic of China
  3. 3.The First Institute of OceanographyState Oceanic AdministrationQingdaoPeople’s Republic of China

Personalised recommendations