Advertisement

Journal of Applied Phycology

, Volume 25, Issue 5, pp 1567–1573 | Cite as

First report on the allelopathic effect of Tychonema bourrellyi (Cyanobacteria) against Microcystis aeruginosa (Cyanobacteria)

  • Jihai Shao
  • Liang Peng
  • Si Luo
  • Gongliang Yu
  • Ji-dong Gu
  • Shen Lin
  • Renhui LiEmail author
Article

Abstract

The allelopathic effect of the cyanobacterium Tychonema bourrellyi against the cyanobacterium Microcystis aeruginosa is reported for the first time in this paper. The filtrate of T. bourrellyi CHAB663 culture showed strong inhibitory effect on M. aeruginosa NIES-843, but the inhibitory effect was weakened by shaking culture, and such results implied that the allelopathic effect was probably mediated by the volatile substances secreted by T. bourrellyi. β-Ionone was identified as a major ingredient in the volatile substances in the cultures of T. bourrellyi, and it may act as an important allelochemical responsible for this allelopathic activity. The filtrates of T. bourrellyi culture were shown to decrease the maximum electron transport rate (ETRmax) and elevate the reactive oxygen species (ROS) levels in the cells of M. aeruginosa NIES-843.

Keywords

Tychonema bourrellyi Microcystis aeruginosa Allelopathy Volatile substances β-Ionone Cyanobacteria 

Notes

Acknowledgments

The research was supported by National Natural Science Foundation of China (no. 21107024), and Foundation of Furong scholar project of Hunan Province.

References

  1. Azevedo SM, Carmichael WW, Jochimsen EM, Rinehart KL, Lau S, Shaw GR, Eaglesham GK (2002) Human intoxication by microcystins during renal dialysis treatment in Caruaru, Brazil. Toxicology 181–182:441–446Google Scholar
  2. Doan NT, Rickards RW, Rothschild JM, Smith GD (2000) Allelopathic actions of the alkaloid 12-epihapalindole E isonitrile and calothrixin A from cyanobacteria of the genera Fischerella and Calothrix. J Appl Phycol 12:409–416CrossRefGoogle Scholar
  3. Griffiths HR (2005) Chemical modifications of biomolecules by oxidants. The handbook of environmental chemistry, vol 2. Springer, New York, pp 33–62Google Scholar
  4. Gross EM, Hilt S, Lombardo P, Mulderij G (2007) Searching for allelopathic effects of submerged macrophytes on phytoplankton—state of the art and open questions. Hydrobiologia 584:77–88CrossRefGoogle Scholar
  5. Hirata K, Yoshitomi S, Dwi S, Iwabe OAM, Polchai J, Miyamoto K (2003) Bioactivities of nostocine A produced by a freshwater cyanobacterium Nostoc spongiaeforme TISTR 8169. J Biosci Bioeng 95:512–517PubMedGoogle Scholar
  6. Hong Y, Hu HY, Li FM (2008) Physiological and biochemical effects of allelochemical ethyl 2-methyl acetoacetate (EMA) on cyanobacterium Microcystis aeruginosa. Ecotoxicol Environ Saf 71:527–534PubMedCrossRefGoogle Scholar
  7. Ichimura T (1979) Media for freshwater cyanobacteria. In: Nishizawa K, Chihara M (eds) Methods in phycology. Kyouritsu Shuppan, Tokyo, pp 295–296Google Scholar
  8. Inderjit, Dakshini KMM (1994) Algal allelopathy. Bot Rev 61: 28–44Google Scholar
  9. Jančula D, Maršálek B (2011) Critical review of actually available chemical compounds for prevention and management of cyanobacterial blooms. Chemosphere 85:1415–1422PubMedCrossRefGoogle Scholar
  10. LeGresley M, McDermott G (2010) Counting chamber methods for quantitative phytoplankton analysis—haemocytometer, Palmer-Maloney cell and Sedgewick-Rafter cell. In: Karlson B, Cusack C, Bresnan E (eds) Microscopic and molecular methods for quantitative phytoplankton analysis. UNESCO, Paris, pp 25–30Google Scholar
  11. Li H, Hou G, Dakui F, Xiao B, Song L, Liu Y (2007) Prediction and elucidation of the population dynamics of Microcystis spp. in Lake Dianchi (China) by means of artificial neural networks. Ecol Inform 2:184–192CrossRefGoogle Scholar
  12. Manage PM, Kawabata Z, Nakano SI (2000) Algicidal effect of the bacterium Alcaligenes denitrificans on Microcystis spp. Aquat Microb Ecol 22:111–117CrossRefGoogle Scholar
  13. Marshall HJ, Geider RJ, Flynn KJ (2000) A mechanistic model of photoinhibition. New Phytol 145:347–359CrossRefGoogle Scholar
  14. Mehner C, Müller D, Krick A, Kehraus S, Löser R (2008) A novel β-amino acid in cytotoxic peptides from the cyanobacterium Tychonema sp. Eur J Org Chem 10:1732–1739CrossRefGoogle Scholar
  15. Molisch H (1937) Der Einfluss einer Pflanze auf die andere–allelopathie. Fisher, JenaGoogle Scholar
  16. Mu RM, Fan ZQ, Pei HY, Yuan XL, Liu SX, Wang XR (2007) Isolation and algae-lysing characteristics of the algicidal bacterium B5. J Environ Sci (China) 19:1336–1340CrossRefGoogle Scholar
  17. Nishiyama Y, Allakhverdiev SI, Murata N (2006) A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochimica et Biophysica Acta 1757:742–749Google Scholar
  18. Østensvik Ø, Skulberg OM, Underdal B, Hormazabal V (1998) Antibacterial properties of extracts from selected planktonic freshwater cyanobacteria—a comparative study of bacterial bioassays. J Appl Microbiol 84:1117–1124Google Scholar
  19. Ozaki K, Ohta A, Iwata C, Horikawa A, Tsuji K, Ito E, Ikai Y, Harada K (2008) Lysis of cyanobacteria with volatile organic compounds. Chemosphere 71:1531–1538PubMedCrossRefGoogle Scholar
  20. Rice EL (1984) Allelopathy, 2nd edn. Academic Press, OrlandoGoogle Scholar
  21. Shao J, Xu Y, Wang Z, Jiang Y, Yu G, Peng X, Li R (2011) Elucidating the toxicity targets of β-ionone on photosynthetic system of Microcystis aeruginosa NIES-843 (Cyanobacteria). Aquat Toxicol 104:48–55PubMedCrossRefGoogle Scholar
  22. Sharma NK, Tiwari SP, Tripathi K, Rai AK (2011) Sustainability and cyanobacteria (blue-green algae): facts and challenges. J Appl Phycol 23:1059–1081CrossRefGoogle Scholar
  23. Takamo K, Igarashi S, Mikami H, Hino S (2003) Causation of reversal simultaneity for diatom biomass and density of Phormidium tenue during the warm season in eutrophic Lake Barato, Japan. Limnology 4:73–78CrossRefGoogle Scholar
  24. Volk RB (2005) Screening of microalgal culture media for the presence of algicidal compounds and isolation and identification of two bioactive metabolites, excreted by the cyanobacteria Nostoc insulare and Nodularia harveyana. J Appl Phycol 17:339–347CrossRefGoogle Scholar
  25. Volk RB, Furkert FH (2006) Antialgal, antibacterial and antifungal activity of two metabolites produced and excreted by cyanobacteria during growth. Microbiol Res 161:180–186PubMedCrossRefGoogle Scholar
  26. Wu JT, Kuo-Huang LL, Lee J (1998) Algicidal effect of Peridinium bipes on Microcystis aeruginosa. Curr Microbiol 37:257–261PubMedCrossRefGoogle Scholar
  27. Wu Y, Liu J, Yang L, Chen H, Zhang S, Zhao H, Zhang N (2011) Allelopathic control of cyanobacterial blooms by periphyton biofilms. Environ Microbiol 13:604–615PubMedCrossRefGoogle Scholar
  28. Ye W, Liu X, Tan J, Li D, Yang H (2009) Diversity and dynamics of microcystin-producing cyanobacteria in China's third largest lake, Lake Taihu. Harmful Algae 8:637–644CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Jihai Shao
    • 1
    • 3
  • Liang Peng
    • 1
  • Si Luo
    • 1
  • Gongliang Yu
    • 2
  • Ji-dong Gu
    • 3
    • 4
  • Shen Lin
    • 2
  • Renhui Li
    • 2
    Email author
  1. 1.College of Resources and EnvironmentHunan Agricultural UniversityChangshaPeople’s Republic of China
  2. 2.Key Laboratory of Algal BiologyInstitute of Hydrobiology, Chinese Academy of SciencesWuhanPeople’s Republic of China
  3. 3.Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources UseHunan Agricultural UniversityChangshaPeople’s Republic of China
  4. 4.Laboratory of Environmental Microbiology and Toxicology, School of Biological SciencesThe University of Hong KongHong KongPeople’s Republic of China

Personalised recommendations