Journal of Applied Phycology

, Volume 25, Issue 3, pp 787–794 | Cite as

Effects of irradiance and salinity on the growth of carpospore-derived tetrasporophytes of Gracilaria edulis and Gracilaria tenuistipitata var liui (Rhodophyta)

  • Chew-Hock Yu
  • Phaik-Eem Lim
  • Siew-Moi Phang


Gracilaria edulis and Gracilaria tenuistipitata var liui are agarophytes with high commercial value which are currently cultivated in countries like India and Thailand. They have great potential for mariculture in Malaysia. Experiments were carried out to study carpospore germination and determine the effects of irradiance and salinity on the growth of these two species. Both species showed the Dumontia type of carpospore development. Both species showed increased daily growth rate (% day−1) with increasing irradiance and tolerance for a wide range of salinity with a preference for low salinity. G. edulis grew best at 100 μmol photons m−2 s−1 and 15 psu while G. tenuistipitata var liui grew best at 60–130 μmol photons m−2 s−1 and 15 psu. The highest growth rate obtained for G. edulis and G. tenuistipitata var liui was 13.57 and 19.7 % day−1 respectively. tenuistipitata var liui. ANOVA showed that both irradiance and salinity have significant effect on the growth of both species (P < 0.05). The results showed that G. tenuistipitata var liui is a good candidate for mass cultivation in Malaysian brackish waters. Besides, this study also showed the feasibility of using spore culture to provide stocks for sustainable farming of Gracilaria.


Carpospore culture Gracilaria edulis Gracilaria tenuistipitata var liui Irradiance Salinity Rhodophyta 



This study was funded by the University of Malaya Postgraduate Research Fund (PS265/2010A and PV082/2011B). The authors are thankful to Prof. Chong Ving Ching, Dr. Yeong Hui Yin and Dr. Teoh Ming Li for their guidance and assistance especially in the aspect of statistical analysis.


  1. Alveal K, Romo H, Werlinger C, Oliveira EC (1997) Mass cultivation of the agar-producing alga Gracilaria chilensis (Rhodophyta) from spores. Aquaculture 148:77–83CrossRefGoogle Scholar
  2. Atkinson MJ, Bingman C (1997) Elemental composition of commercial seasalts. J Aquaricult Aquat Sci 8:39–43Google Scholar
  3. Bezerra AF, Marinho-Soriano E (2010) Cultivation of the red seaweed Gracilaria birdiae (Gracilariales, Rhodophyta) in tropical waters of northeast Brazil. Biomass Bioenerg 34:1813–1817CrossRefGoogle Scholar
  4. Bixler HJ, Porse H (2010) A decade of change in the seaweed hydrocolloids industry. J Appl Phycol 23:321–335CrossRefGoogle Scholar
  5. Buschmann AH, Westermeier R, Retamales CA (1995) Cultivation of Gracilaria on the sea-bottom in southern Chile: a review. J Appl Phycol 7:291–301CrossRefGoogle Scholar
  6. Byrne K, Zuccarello G, West J, Liao M, Kraft G (2002) Gracilaria species (Gracilariaceae, Rhodophyta) from southeastern Australia, including a new species, Gracilaria perplexa sp. Nov.: morphology, molecular relationships and agar content. Phycol Res 50:295–312Google Scholar
  7. Choi HG, Kim YS, Kim JH, Lee SJ, Park EJ, Ryu J, Nam KW (2006) Effects of temperature and salinity on the growth of Gracilaria verrucosa and G. chorda, with the potential for mariculture in Korea. J Appl Phycol 18:269–277CrossRefGoogle Scholar
  8. Coomans RJ, Hommersand MH (1990) Vegetative growth and organization. In: Cole KM, Sheath RG (eds) Biology of the red algae. Cambridge University Press, New York, pp 275–304Google Scholar
  9. Dawes CJ, Orduna-Rojas J, Robledo D (1999) Response of the tropical red seaweed Gracilaria cornea to temperature, salinity and irradiance. J Appl Phycol 10:419–425CrossRefGoogle Scholar
  10. Dixon PS (1973) Biology of the Rhodophyta. Oliver & Boyd, Edinburgh, 285 ppGoogle Scholar
  11. Ganesan M, Sahu N, Eswaran K (2011) Raft culture of Gracilaria edulis in open sea along the south-eastern coast of India. Aquaculture 321:145–151CrossRefGoogle Scholar
  12. Garza-Sánchez F, Zertuche-González JA, Chapman DJ (2000) Effect of temperature and irradiance on the release, attachment and survival of spores of Gracilaria pacifica Abbott (Rhodophyta). Bot Mar 43:205–212CrossRefGoogle Scholar
  13. Glenn EP, Moore D, Fitzsimmons K, Azevedo C (1996) Spore culture of the edible red seaweed, Gracilaria parvispora (Rhodophyta). Aquaculture 142:59–74CrossRefGoogle Scholar
  14. Glenn EP, Moore D, Brown JJ, Tanner R, Fitzsimmons K, Akutigawa M, Napolean S (1998) A sustainable culture system for Gracilaria parvispora (Rhodophyta) using sporelings, reef grow-out and floating cages in Hawaii. Aquaculture 165:221–232CrossRefGoogle Scholar
  15. Graham LE, Wilcox LW (2000) Algae. Prentice-Hall, Upper Saddle River, p 640 ppGoogle Scholar
  16. Guiry MD (1990) Sporangia and spores. In: Cole KM, Sheath RG (eds) Biology of the red algae. Cambridge University Press, Cambridge, pp 347–376Google Scholar
  17. Guzmán-Urióstegui A, Robledo D (1999) Factors affecting sporulation of Gracilaria cornea (Gracilariales, Rhodophyta) carposporophytes from Yucatan, Mexico. Hydrobiologia 398/399:285–290CrossRefGoogle Scholar
  18. Halling C, Aroca G, Cifuentes M, Buschmann AH, Troell M (2005) Comparison of spore inoculated and vegetative propagated cultivation methods of Gracilaria chilensis in an integrated seaweed and fish cage culture. Aquacult Int 13:409–422CrossRefGoogle Scholar
  19. He LH, Wu M, Qian PY, Zhu MY (2002) Effects of co-culture and salinity on the growth and agar yield of Gracilaria tenuistipitata var liui Zhang et Xia. Chin J Oceanol Limn 20:365–370CrossRefGoogle Scholar
  20. Hurtado-Ponce AQ, Samonte GPB, Ma RL, Guanzon N (1992) Gracilaria (Rhodophyta) farming in Panay, Western Visayas, Philippines. Aquaculture 105:233–240CrossRefGoogle Scholar
  21. Israel A, Milagrosa MG, Friedlander M (1999) Effect of salinity and pH on growth and agar yield of Gracilaria tenuistipitata var. liui in laboratory and outdoor cultivation. J Appl Phycol 11:543–549CrossRefGoogle Scholar
  22. Jayasankar R, Varghese S (2002) Cultivation of marine red alga Gracilaria edulis (Gigartinales, Rhodophyta) from spores. Indian J Mar Sci 31:75–77Google Scholar
  23. Kain JM, Destombe C (1995) A review of the life history, reproduction and phenology of Gracilaria. J Appl Phycol 7:269–281CrossRefGoogle Scholar
  24. Kumar M, Kumari P, Gupta V, Reddy CRK, Jha B (2010) Biochemical responses of red alga Gracilaria corticata (Gracilariales, Rhodophyta) to salinity induced oxidative stress. J Exp Mar Biol Ecol 391:27–34CrossRefGoogle Scholar
  25. Lim PE, Phang SM (2004) Gracilaria species (Gracilariales, Rhodophyta) of Malaysia including two new records. Malaysian J Sci 23:71–80Google Scholar
  26. Lobban CS, Harrison PJ (1994) Seaweed ecology and physiology. Cambridge University Press, Cambridge, 366 ppCrossRefGoogle Scholar
  27. Luhan MRJ, Sollesta H (2010) Growing the reproductive cells (carpospores) of the seaweed, Kappaphycus striatum, in the laboratory until outplanting in the field and maturation to tetrasporophyte. J Appl Phycol 22:579–585CrossRefGoogle Scholar
  28. Lüning K (1981) Light. In: Lobban CS, Wynne MJ (eds) The biology of seaweeds. Blackwell, Oxford, pp 326–355Google Scholar
  29. Lüning K (1990) Seaweeds: their environment, biogeography, and ecophysiology. Wiley, New York, 527 ppGoogle Scholar
  30. Mantri VA, Thakur MC, Kumar M, Reddy CRK, Jha B (2009) The carpospore culture of industrially important red alga Gracilaria dura (Gracilariales, Rhodophyta). Aquaculture 297:85–90CrossRefGoogle Scholar
  31. Ngan Y, Price IR (1979) Systematic significance of spore size in the Florideophyceae (Rhodophyta). Brit Phycol J 14:285–303CrossRefGoogle Scholar
  32. Oliveira EC, Alveal K, Andersen RJ (2000) Mariculture of the agar-producing gracilariod reef algae. Rev Fish Sci 8:345–377Google Scholar
  33. Orduna-Rojas J, Robledo D (1999) Effects of irradiance and temperature on the release and growth of carpospores from Gracilaria cornea J. Agardh (Gracilariales, Rhodophyta). Bot Mar 42:315–319CrossRefGoogle Scholar
  34. Oza RM (1975) Studies on Indian Gracilaria I. Carpospore and tetraspore germination and early stages of development in Gracilaria corticata. J Ag Bot Mar 18:199–201Google Scholar
  35. Pellizzari F, Oliveira EC, Yokoya NS (2008) Life-history, thallus ontogeny, and the effects of temperature, irradiance and salinity on growth of the edible green seaweed Gayralia spp. (Chlorophyta) from Southern Brazil. J Appl Phycol 20:75–82CrossRefGoogle Scholar
  36. Phang SM (1994) Some species of Gracilaria from Peninsular Malaysia and Singapore. In: Abbott IA (ed) Taxonomy of economic seaweeds. With reference to some pacific species, vol 4. California Sea Grant College, University of California, California, pp 125–134Google Scholar
  37. Phang SM (2006) Seaweed resources in Malaysia: current status and future prospects. Aquat Ecosyst Health 9:185–202CrossRefGoogle Scholar
  38. Phang SM, Shaharuddin S, Noraishah H, Sasekumar A (1996) Studies on Gracilaria changii (Gracilariales, Rhodophyta) from Malaysian mangroves. Hydrobiologia 326/327:347–352Google Scholar
  39. Polifrone M, Masi FD, Gargiulo GM (2006) Alternative pathways in the life history of Gracilaria gracilis (Gracilariales, Rhodophyta) from north-eastern Sicily (Italy). Aquaculture 261:1003–1013CrossRefGoogle Scholar
  40. Provasoli L (1968) Media and prospects for the cultivation of marine algae. In: Watanabe A, Hattori A (eds) Cultures and collections of algae. Proceedings of the U.S.-Japan Conference, Japanese Society for Plant Physiology, Hakone: 63-75Google Scholar
  41. Raikar SV, Iima M, Fujita Y (2001) Effect of temperature, salinity and light intensity on the growth of Gracilaria spp. (Gracilariales, Rhodophyta) from Japan, Malaysia and India. Indian J Mar Sci 30:98–104Google Scholar
  42. Ramlov F, de-Souza JMC, Farias A, Maraschin M, Horta PA, Yokoya NS (2012) Effects of temperature, salinity, irradiance, and nutrients on the development of carposporelings and tetrasporophytes in Gracilaria domingensis (Kütz.) Sonder ex Dicki (Rhodophyta, Gracilariales). Bot Mar 55:253–259CrossRefGoogle Scholar
  43. Rebello J, Ohno M, Critchley AT, Sawamura M (1996) Growth rates and agar quality of Gracilaria gracilis (Stackhouse) Steentoft from Namibia, Southern Africa. Bot Mar 39:273–279CrossRefGoogle Scholar
  44. Ryder E, Nelson SG, McKeon C, Glenn EP, Fitzsimmons K, Napolean S (2004) Effect of water motion on the cultivation of the economic seaweed Gracilaria parvispora (Rhodophyta) on Molokai, Hawaii. Aquaculture 238:207–219CrossRefGoogle Scholar
  45. Santelices B, Correa JA, Aedo D, Flores V, Hormazabal M, Sanchez P (1999) Convergent biological processes in coalescing Rhodophyta. J Phycol 35:1127–1149CrossRefGoogle Scholar
  46. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. Freeman, New York, 887 ppGoogle Scholar
  47. Tan J, Lim PE, Phang SM (2012) Phylogenetic relationship of Kappaphycus Doty and Eucheuma J. Agardh (Solieriaceae, Rhodophyta) in Malaysia. J Appl Phycol. doi: 10.1007/s10811-012-9833-1
  48. Tseng CK, Xia BM (1999) On the Gracilaria in the Western Pacific and the Southeastern Asia Region. Bot Mar 42:209–217CrossRefGoogle Scholar
  49. Xu YJ, Wei W, Fang JG (2009) Effects of salinity, light and temperature on growth rates of two species of Gracilaria (Rhodophyta). Chin J Oceanol Limn 27:350–355CrossRefGoogle Scholar
  50. Yeong HY, Khalid N, Phang SM (2008) Protoplast isolation and regeneration from Gracilaria changii (Gracilariales, Rhodophyta). J Appl Phycol 20:641–651CrossRefGoogle Scholar
  51. Yokoya NS, Oliveira EC (1992) Effects of salinity on the growth rate, morphology and water content of some Brazilian red algae of economic importance. Cienc Mar 18:49–64Google Scholar
  52. Yokoya NS, Oliveira EC (1993) Effects of temperature on spore germination and sporeling development in South American agarophytes (Rhodophyta). Jpn J Phycol 41:283–293CrossRefGoogle Scholar
  53. Yokoya NS, Kakita H, Obika H, Kitamura T (1999) Effects of environmental factors and plant growth regulators on growth of the red alga Gracilaria vermiculophylla from Shikoku Island, Japan. Hydrobiologia 398/399:339–347Google Scholar
  54. Zemke-White WL, Ohno M (1999) World seaweed utilisation: an end-of-century summary. J Appl Phycol 11:369–376CrossRefGoogle Scholar
  55. Zhang QS, Tang YZ, Liu SK, Zhang SB, Lu ZC, Cu SH, Yu YQ (2012) Zygote-derived seedling production of Sargassum thunbergii: focus on two frequently experienced constraints in tank culture of seaweed. J Appl Phycol 24:707–714CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Chew-Hock Yu
    • 1
    • 2
  • Phaik-Eem Lim
    • 1
    • 2
  • Siew-Moi Phang
    • 1
    • 2
  1. 1.Institute of Biological Sciences, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia
  2. 2.Institute of Ocean and Earth SciencesUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations