Journal of Applied Phycology

, Volume 25, Issue 5, pp 1555–1565 | Cite as

Algicidal activity of the thiazolidinedione derivative TD49 against the harmful dinoflagellate Heterocapsa circularisquama in a mesocosm enclosure

  • Seung Ho Baek
  • Moonho Son
  • Si Woo Bae
  • Kyoungsoon Shin
  • Dong Hee Na
  • Hoon Cho
  • Mineo Yamaguchi
  • Young Ok Kim
  • Si Wouk Kim


To assess the algicidal effects of the thiazolidinedione derivative TD49 on the unarmored dinoflagellate Heterocapsa circularisquama and to evaluate the response of the planktonic community and the environment to this chemical, we undertook mesocosm (1,300 L) and small-scale experiments. The reduction ratio for H. circularisquama in each experiment was dependent on the concentration of TD49. At a TD49 concentration >0.4 μM, the abundance of H. circularisquama decreased by 99 % in the small-scale experiment and by 84 % in the mesocosm during the initial 2 days. At 0.2 μM TD49, the abundance of H. circularisquama decreased by up to 85 % in the small-scale experiment, whereas the abundance in the mesocosm increased, implying the absence of an algicidal effect. The decrease in planktonic organisms, including H. circularisquama, following TD49 treatment was correlated with abrupt declines in culture pH and dissolved oxygen concentration. Following addition of TD49, there was a significant increase in the abundance of diatoms and cryptophyta species, and after 8 days, the dominant species in the TD49 treatments shifted to small pennate diatoms including Cylindrotheca and Entomoneis species. The growth of some species among the zooplankton community was promoted at low TD49 concentrations (≤0.4 μM), whereas high concentrations (≥1.0 μM) had a negative effect. This study demonstrates that TD49 is an effective agent for the control for H. circularisquama blooms and that large-scale mesocosms play a crucial role in assessing the application of algicides such as TD49 in natural environments.


Thiazolidinedione derivative TD49 Heterocapsa circularisquama Dinoflagellate Mesocosm Algicidal effect 



This research was supported by the Pioneer Research Center Program through the National Research Program of Korea funded by the Ministry of Education, Science and Technology (grant no. M1071118001-08M1118-00110) and KIOST projects (PE98745). We would like to express to National Research Institute of Fisheries and Environment of Inland Sea, Japan for providing some of the H. circularisquama strain.


  1. Anderson DM (1997) Turning back the harmful red tide. Nature 388:513–514CrossRefGoogle Scholar
  2. Anderson DM (2009) Approaches to monitoring, control and management of harmful algal blooms (HABs). Ocean Coast Manag 52:342–347PubMedCrossRefGoogle Scholar
  3. Archambault MC, Bricelj VM, Grant J, Anderson DM (2004) Effects of suspended and sedimented clays on juvenile hard clams, Mercenaris mercenaria, within the context of harmful algal bloom mitigation. Mar Biol 144:553–565CrossRefGoogle Scholar
  4. Baek SH, Jang MC, Son MH, Joo HM, Cho H, Kim YO (2012a) Assessment of new algicidal thiazolidinedione (TD49) for the control of marine red tide organisms. “The Sea”. J Korean Soc Oceanogr 17:9–15, In KoreanGoogle Scholar
  5. Baek SH, Jang MC, Son MH, Joo HM, Cho H, Kim YO (2012b) Algicidal effects of a newly developed thiazolidinedione derivative TD49, on dinoflagellate Akashiwo sanguinea. Ocean Polar Res 34:1–11 (In Korean)CrossRefGoogle Scholar
  6. Baek SH, Jang MC, Son MH, Kim SW, Cho H, Kim YO (2012c) Algicidal effects on Heterosigma akashiwo and Chattonella marina (Raphidophyceae), and toxic effects on natural plankton assemblages by a thiazolidinedione derivative TD49 in a microcosm. J Appl Phycol. doi: 10.1007/s10811-012-9905-2
  7. Choi HG, Kim PJ, Lee WC, Yun SJ, Kim HG, Lee HJ (1998) Removal efficiency of Cochlodinium polykrikoides by yellow loess. J Korean Fish Soc 31:109–113 (In Korean)Google Scholar
  8. Doucette GJ, McGovern ER, Babinchak JA (1999) Algicidal bacteria active against Gymnodinium breve (Dinophyceae). I. Bacteria isolation and characterization of killing activity. J Phycol 35:1447–1454CrossRefGoogle Scholar
  9. Han HK, Kim YM, Lim SJ, Hong SS, Jung SG, Cho H, Lee WJ, Jin ES (2011) Enhanced efficacy of TD53, a novel algicidal agent, against the harmful algae via the liposomal delivery system. Int J Pharmaceutics 405:137–141CrossRefGoogle Scholar
  10. Horiguchi T (1995) Heterocapsa circularisquama sp. nov. with pearl oyster consignments. In: Reguera B, Blanco J, Fernandez ML, Wyatt T (eds) Harmful algae. Xunta de Galicia and Intergovernmental Oceanographic Commission of UNESCO, Paris, pp 224–226Google Scholar
  11. Imai I, Ishida Y, Hata Y (1993) Killing of marine phytoplankton by a gliding bacterium Cytophaga sp., isolated from the coastal sea of Japan. Mar Biol 116:527–532CrossRefGoogle Scholar
  12. Imai I, Ishida Y, Sakaguchi K, Hata Y (1995) Algicidal marine bacteria isolated from northern Hiroshima Bay. Japan Fish Sci 61(61):628–636Google Scholar
  13. Iwataki M, Wong MW, Fukuyo Y (2002) New record of Heterocapsa circularisquama (Dinophyceae) from Hong Kong. Fish Sci 68:1161–1163CrossRefGoogle Scholar
  14. Jeong JH, Jin HJ, Sohn CH, Suh KH, Hong YK (2000) Algicidal activity of the seaweed Corallina pilulifera against red tide microalgae. J Appl Phycol 12:37–43CrossRefGoogle Scholar
  15. Jeong HJ, Kim JS, Yoo YD, Kim ST, Song JY, Kim TH, Seong KA, Kang NS, Kim MS, Kim JH, Kim S, Ryu J, Lee HM, Yih WH (2008) Control of the harmful alga Cochlodinium polykrikoides by the naked ciliate Strombidinopsis jeokjo in mesocosm enclosures. Harmful Algae 7:368–377CrossRefGoogle Scholar
  16. Kang YH, Kim JD, Kim BH, Kong DS, Han MS (2005) Isolation and characterization of a bio-agent antagonistic to diatom, Stephanodiscus hantzschii. J Appl Microbiol 98:1030–1038PubMedCrossRefGoogle Scholar
  17. Kenefick SL, Se H, Peterson HG, Prepas EE (1993) Toxin release from Microcystis aeruginosa after chemical treatment. Water Sci Technol 27:433–440Google Scholar
  18. Kim HG (2006) Mitigation and controls of HABs. In: Granéli E, Turner JT (eds) Ecology of harmful algae. Ecological studies. Springer, Berlin, pp 327–338CrossRefGoogle Scholar
  19. Kim YM, Wu Y, Duong TU, Ghodake GS, Kim SW, Jin ES, Cho H (2010) Thiazolidinediones as a novel class of algicides against red tide harmful algal species. Appl Biochem Biotechnol 162:2273–2283PubMedCrossRefGoogle Scholar
  20. Kim YM, Wu Y, Duong TU, Jung SG, Kim SW, Cho H, Jin ES (2012) Algicidal activity of thiazolidinediones derivatives against harmful algal blooming species. Mar Biotechnol 14:312–322PubMedCrossRefGoogle Scholar
  21. Kim YO, Kang J-H, Kwon OY, Jung SW, Kim SW (2011) Structural shift of planktonic communities in seawater enclosures: from autotrophic to heterotrophic communities. Aquat Ecosys Health Manage 14:239–245CrossRefGoogle Scholar
  22. Kim JS, Kim JC, Lee S, Lee BH, Cho KY (2006) Biological activity of L-2-azetidinecarboxylic acid, isolated from Polygonatum odoratum var. pluriflorum, against several algae. Aquat Bot 85:1–6CrossRefGoogle Scholar
  23. Lam AKY, Prepas EE, Spink D, Hrudey SE (1995) Chemical control of hepatotoxic phytoplankton: implications for human health. Water Res 29:1845–1854CrossRefGoogle Scholar
  24. Lee HK, Cho H, Han HK (2010) Improved dissolution of poorly water soluble TD49, a novel algicidal agent, via the preparation of solid dispersion. J Pharma Invest 40:181–185CrossRefGoogle Scholar
  25. Lee YJ, Choi J-K, Kim EK, Youn S-H, Yang EJ (2008) Field experiments on mitigation of harmful algal blooms using a Sophorolipid–Yellow clay mixture and effects on marine plankton. Harmful Algae 7:154–162CrossRefGoogle Scholar
  26. Lehman JM, Moore LB, Smith-Oliver TA, Wilkinson WO, Willson TM, Kliewer SA (1995) An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor (PPAR). J Biol Chem 270:12953–12956CrossRefGoogle Scholar
  27. Li FM, Hu HY (2005) Isolation and characterization of a novel antialgal allelochemical from Phragmites communis. Appl Environ Microb 71:6545–6553CrossRefGoogle Scholar
  28. Liu J, Zhang H, Yang W, Gao J, Ke Q (2004) Studies on biquaternary ammonium salt algaecide for removing red tide. Mar Sci Bull 6:60–65CrossRefGoogle Scholar
  29. Matsuyama Y (1999) Harmful effect of dinoflagellate Heterocapsa circularisquama on shellfish aquaculture in Japan. Jpn Agric Res Q 33:283–293Google Scholar
  30. Matsuyama Y, Kimura A, Fujii H, Takayama H, Uchida T (1997) Occurrence of a Heterocapsa circularisquama red tide and subsequent damages to shellfish in western Hiroshima Bay, Seto Inland Sea, Japan in 1995. Bull Nansei Natl Fish Res Inst 30:189–207Google Scholar
  31. Na G, Choi W, Chun Y (1996) A study on red tide control with Loess suspension. J Aquacult 9:239–245Google Scholar
  32. Nagai K, Matsuyama Y, Uchida Y, Yamaguchi M, Ishimura M, Nishimura A, Akamatsu S, Honjo T (1996) Toxicity and LD50 levels of the red tide dinoflagellate Heterocapsa circularisquama on juvenile pearl oysters. Aquaculture 144:149–154CrossRefGoogle Scholar
  33. Nagasaki K, Tomaru Y, Tarutani K, Katanozaka N, Yamanaka S, Tanabe H, Yamaguchi M (2003) Growth characteristics and intraspecies host specificity of a large virus infecting the dinoflagellate Heterocapsa circularisquama. Appl Environ Microbiol 69:2580–2586PubMedCrossRefGoogle Scholar
  34. Nagasaki K, Tarutani K, Yamaguchi M (1999) Growth characteristics of Heterosigma akashiwo virus and its possible use as a microbiological agent for red tide control. Appl Environ Microbiol 65:898–902PubMedGoogle Scholar
  35. Nakamura Y (1998) Biomass, feeding and production of Noctiluca scintillans in the Seto Inland Sea, Japan. J Plankton Res 20:2213–2222CrossRefGoogle Scholar
  36. Russell JB, Dombrowski DB (1980) Effect of pH on the efficiency of growth by pure culture of rumen bacteria in continuous culture. Appl Environ Microbiol 39:604–610PubMedGoogle Scholar
  37. Schrader KK, Nanayakkara NPD, Tucker CS, Rimando AM, Ganzera M, Schaneberg BT (2003) Novel derivatives of 9,10-anthraquinone are selective algicides against the musty-odor cyanobacterium Oscillatoria perornata. Appl Environ Microbiol 69:5319–5327PubMedCrossRefGoogle Scholar
  38. Sigee DC, Glenn R, Andrews MJ, Bellinger EG, Butler RD, Epton HAS, Hendry RD (1999) Biological control of cyanobacteria: principle and possibilities. Hydrobiologia 395/396:161–172CrossRefGoogle Scholar
  39. Shirota A (1989) Red tide problem and countermeasures. Int J Aquat Fish Technol 1:195–293Google Scholar
  40. Shumway SE, Frank DM, Ewart LM, Ward JE (2003) Effect of yellow loess on clearance rate in seven species of benthic, filter-feeding invertebrates. Aquacult Res 34:1391–1402CrossRefGoogle Scholar
  41. Sengco MR, Anderson DM (2004) Controlling harmful algal blooms through clay flocculation. J Eukaryot Microbiol 51:169–172PubMedCrossRefGoogle Scholar
  42. Tamai K (1999) Current status of outbreaks and fisheries damages due to Heterocapsa circularisquama. Bull Plankton Soc Jpn 46:153–154 (In Japanese)Google Scholar
  43. Tarutani K, Nagasaki K, Itakura S, Yamaguchi M (2001) Isolation of a virus infecting the novel shellfish killing dinoflagellate Heterocapsa circularisquama. Aquat Microb Ecol 23:103–111CrossRefGoogle Scholar
  44. Terlizzi DE, Ferrier MD, Armbrester EA, Anlauf KA (2002) Inhibition of dinoflagellate growth by extracts of barley straw (Hordeum vulgare). J Appl Phycol 14:275–280CrossRefGoogle Scholar
  45. Yu ZM, Zou JZ, Ma X (1994) Application of clays to removal of red tide organisms 1. Coagulation of red tide organisms with clays. Chin J Oceanol Limnol 12:193–200CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Seung Ho Baek
    • 1
  • Moonho Son
    • 1
  • Si Woo Bae
    • 1
  • Kyoungsoon Shin
    • 1
  • Dong Hee Na
    • 3
  • Hoon Cho
    • 4
  • Mineo Yamaguchi
    • 5
  • Young Ok Kim
    • 1
  • Si Wouk Kim
    • 2
  1. 1.Korea Institute of Ocean Science and Technology/South Sea InstituteGeojeSouth Korea
  2. 2.Department of Environmental Engineering, Pioneer Research Center for Controlling of Harmful Algal BloomChosun UniversityGwangjuSouth Korea
  3. 3.College of PharmacyKyungpook National UniversityDaeguSouth Korea
  4. 4.Department of Polymer Science & EngineeringChosun UniversityGwangjuSouth Korea
  5. 5.Research Center for Environmental ConservationNational Research Institute of Fisheries and Environment of Inland SeaHiroshimaJapan

Personalised recommendations