Journal of Applied Phycology

, Volume 25, Issue 3, pp 839–846 | Cite as

Microsatellite markers from expressed sequence tags (ESTs) of seaweeds in differentiating various Gracilaria species

  • Sze-Looi Song
  • Phaik-Eem Lim
  • Siew-Moi Phang
  • Weng-Wah Lee
  • Khanjanapaj Lewmanomont
  • Danilo B. Largo
  • Nurridan Abdul Han


Gracilaria is a red seaweed that has been cultivated worldwide and is commercially used for food, fertilizers, animal fodder, and phycocolloids. However, the high morphological plasticity of seaweeds often leads to the misidentification in the traditional identification of Gracilaria species. Molecular markers are important especially in the correct identification of Gracilaria species with high economic value. Microsatellite markers were developed from the expressed sequence tags of seaweeds deposited at the National Center for Biotechnology Information database and used for differentiating Gracilaria changii collected at various localities and two other Gracilaria species. Out of 33 primer pairs, only one primer pair gave significant results that can distinguish between three different Gracilaria species as well as G. changii from various localities based on the variation in repeated nucleotides. The unweighted pair group method using arithmetic mean dendrogram analysis grouped Gracilaria species into five main clades: (a) G. changii from Batu Besar (Malacca), Sandakan (Sabah), Bintulu (Sarawak), Batu Tengah (Malacca), Gua Tanah (Malacca), Middle Banks (Penang), Sungai (Sg.) Merbok (Kedah), Teluk Pelandok (Negeri Sembilan), Pantai Dickson (Negeri Sembilan), Sg. Kong-Kong (Johore), and Sg. Pulai (Johore); (b) Gracilaria manilaensis from Cebu, Philippines; (c) G. changii from Morib (Selangor); (d) Gracilaria fisheri from Pattani, Thailand; and (e) G. changii from Pantai Dickson (Negeri Sembilan), Gua Tanah (Malacca), Sg. Merbok (Kedah), Sg. Kong-Kong (Johore), and Sg. Pulai (Johore). This result shows that this primer pair was able to distinguish between three different species, which are G. changii from Morib (Malaysia), G. fisheri from Pattani (Thailand), and G. manilaensis from Cebu (Philippines), and also between different genotypes of G. changii. This suggested that the simple sequence repeat primer we developed was suitable for differentiating between different Gracilaria species due to the polymorphisms caused by the variability in the number of tandem repeats.


Correct identification Genotypes Red seaweeds Rhodophyta SSR markers 



This work was supported by the University of Malaya Research Grant Scheme: Development of Simple Sequence Repeats (SSRs) from Expressed Sequence Tags (ESTs) of Seaweeds (RG025-09SUS) and Postgraduate Research Fund (PS304/2009B and PS269/2010B), University of Malaya. We would like to thank Yow Yoon-Yen in providing the Gracilaria samples.


  1. Abbott IA, Zhang J, Xia BM (1991) Gracilaria mixta, sp. nov. and other western Pacific species of the genus (Rhodophyta: Gracilariaceae). Pac Sci 45:12–27Google Scholar
  2. Alström-Paraport C, Leskinen E (2002) Development of microsatellite markers in the green algae Enteromorpha intestinalis (Chlorophyta). Mol Ecol Notes 2:581–583CrossRefGoogle Scholar
  3. Billot C, Rousvoal S, Estoup A, Epplen JT, Saumitou-Laprade P et al (1998) Isolation and characterization of microsatellite markers in the nuclear genome of the brown alga Laminaria digitata (Phaeophyceae). Mol Ecol 7:1778–1780PubMedGoogle Scholar
  4. Candia A, González MA, Montoya R, Gómez P, Nelson W (1999) Comparison of ITS RFLP patterns of Gracilaria (Rhodophyceae, Gracilariales) populations from Chile and New Zealand and an examination of interfertility of Chilean morphotypes. J Appl Phycol 11:185–193CrossRefGoogle Scholar
  5. Chan CX, Ho CL, Phang SM (2006) Trends in seaweeds research. Trends Plant Sci 11:165–166PubMedCrossRefGoogle Scholar
  6. Chang CF, Xia BM (1988) On two new Gracilaria (Gigartinales, Rhodophyta) from South China. In: Abbott IA (ed) Taxonomy of economic seaweeds with reference to some Pacific and Caribbean species Vol. 2, California Sea Grant College Program. pp 127–129Google Scholar
  7. Cheyney D, Kurtzman A (1992) Progress in protoplast fusion and gene transfer in red algae. Abstracts XIVth International Seaweed Symposium. p 68Google Scholar
  8. Coyer JA, Veldsink JH, Jones K, Stam WT, Olsen JL (2002) Characterization of microsatellite loci in the marine seaweeds, Fucus serratus and F. evanescens (Heterokontophyta; Fucaceae). Mol Ecol Not 2:35–37CrossRefGoogle Scholar
  9. Craig J, Fowler S, Burgoyne LA, Scott AC, Harding HWJ (1988) Repetitive deoxyribonycleic acid (DNA) and human genome variation: a concise review relevant to forensic biology. J Forensic Sci 33:1111–1126Google Scholar
  10. Gan S-Y, Qin S, Rofina YO, Yu D, Phang S-M (2003) Transient expression of lacZ in particle bombarded Gracilaria changii (Gracilariales, Rhodophyta). J Appl Phycol 15:345–349CrossRefGoogle Scholar
  11. Guillemin M-L, Destombe C, Faugeron S, Correa JA, Valero M (2005) Development of microsatellites DNA markers in the cultivated seaweed, Gracilaria chilensis (Gracilariales, Rhodophyta). Molec Ecol Notes 5:155–157CrossRefGoogle Scholar
  12. Hepperle D (2002) Fingerprinter©. A software for the analysis, bin-assignment and 01 matrix construction of molecular fingerprints (AFLPs). Win32-Version Distributed by the author via: http://sciencedo-mixde
  13. Hepperle D (2004) TreeMe©. A software for visualization, manipulation, layouting and labeling of phylogenetic trees. Win32-Version Distributed by the author via: http://wwwsequentixde
  14. Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877PubMedCrossRefGoogle Scholar
  15. Intasuwan S, Gordon ME, Daugherty CH, Lindsay GC (1993) Assessment of allozyme variation among New Zealand populations of Gracilaria chilensis (Gracilariales, Rhodophyta) using starch-gel electrophoresis. Hydrobiologia 260/261:159–165CrossRefGoogle Scholar
  16. Iyer R, Clerck OD, Bolton J, Coyne V (2004) Morphological and taxonomic studies of Gracilaria and Gracilariopsis species (Gracilariales, Rhodophyta) from South Africa. S Afr J Bot 70:521–539Google Scholar
  17. Jacob HJ, Linderpaintner K, Lincoln SE, Kusumi K, Bunker RK, Mao YP, Ganten D, Dzau VJ, Lander ES (1991) Genetic mapping of a gene causing hypertension in the stoke-prone spontaneously rat. Cell 67:213–224PubMedCrossRefGoogle Scholar
  18. Kantety RV, La Rota M, Matthews DE, Sorrells ME (2002) Data mining for simple-sequence repeats in expressed sequence tags from barley, maize, rice, sorghum, and wheat. Plant Mol Biol 48:501–510PubMedCrossRefGoogle Scholar
  19. Lim PE, Phang SM (2004) Gracilaria species (Gracilariales, Rhodophyta) of Malaysia including two new records. Malays J Sci 23:71–80Google Scholar
  20. Lim PE, Thong KL, Phang SM (2001) Molecular differentiation of two morphological variants of Gracilaria salicornia. J Appl Phycol 13:335–342CrossRefGoogle Scholar
  21. Liu ZJ, Cordes JF (2004) DNA marker technologies and their applications in aquaculture genetics. Aquaculture 238:1–37CrossRefGoogle Scholar
  22. Maggs CA, Verbruggen H, De Clerck O (2007) Molecular systematics of red algae: building future structures of firm foundations. In: Brodie J, Lewis J (eds) Unravelling the algae: the past, present, and future of algal systematics. CRC Press, Boca Raton, pp 103–121CrossRefGoogle Scholar
  23. Niwa K, Kikuchi N, Iwabuchi M, Aruga Y (2004) Morphological and AFLP variation of Porphyra yezoensis Ueda form, narawaensis Miura (Bangiales, Rhodophyta). Phycol Res 52:180–190Google Scholar
  24. Olsen JL, Sadowski G, Stam WT, Veldsink JH, Jones K (2002) Characterization of microsatellite loci in the marine seaweed Ascophyllum nodosum (Phaeophyceae Fucales). Molec Ecol Notes 2:33–34CrossRefGoogle Scholar
  25. Phang SM (2006) Seaweed resources in Malaysia: current status and future prospects. Aquati Ecosyst Health Manag 9:185–202CrossRefGoogle Scholar
  26. Phang SM, Lewmanomont K (2001) Gracilaria changii (B. M. Xia & I. A. Abbott) I. A. Abbott, C. F. Chang & B. M. Xia. In: Reine P, Trono GC Jr (eds) Plant resources of South-East Asia, no. 15(1). Cryptogams: algae. Backhuys, Leiden, pp 178–180Google Scholar
  27. Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1:215–222Google Scholar
  28. Provan J, Maggs CA (2012) Unique genetic variation at a species’ rear edge is under threat from global climate change. Proc Roy Soc B 279:39–47CrossRefGoogle Scholar
  29. Rassmann K, Schlötterer C, Tautz D (1991) Isolation of simple-sequence loci for use in polymerase chain reaction-based DNA fingerprinting. Electrophoresis 12:113–118PubMedCrossRefGoogle Scholar
  30. Rozen S, Skaletsky HJ (2000) In: Krawetz S, Misener S (eds) Primer3 on the WWW for general users and for biologist programmers. Humana Press, Totowa, pp 365–386Google Scholar
  31. Scholfield CI, Gacesa P, Price JH, Russell SJ, Bhoday R (1991) Restriction fragment length polymorphisms of enzymically-amplified small-subunit rRNA-coding regions from Gracilaria and Gracilariopsis (Rhodophyta)—a rapid method for assessing ‘species’ limits. J Appl Phycol 3:329–334Google Scholar
  32. Scott KD (2001) Microsatellites derived from ESTs and their comparison with those derived from by other methods. In: Henry RJ (ed) Plant genotyping: the DNA fingerprinting of plants. CAB International, Wallingford, pp 225–237CrossRefGoogle Scholar
  33. Shi Y, Yang G, Liu Y, Liao M, Li X et al (2007) Development of 18 polymorphic microsatellite DNA markers of Laminaria japonica (Phaeophyceae). Molec Ecol Notes 7:620–622CrossRefGoogle Scholar
  34. Sim MC, Lim PE, Gan SY, Phang SM (2007) Identification of random amplified polymorphic DNA (RAPD) marker for differentiating male from female and sporophytic thalli of Gracilaria changii (Rhodophyta). J Appl Phycol 19:763–769CrossRefGoogle Scholar
  35. Siow RS, Teo SS, Ho WY, Mohd. Yunus Abd S, Phang SM, Ho CL (2012) Molecular cloning and biochemical characterization of galactose-1-phosphate uridylyltransferase from Gracilaria changii (Rhodophyta). J Phycol 48:155–162CrossRefGoogle Scholar
  36. Sun JW, Jin MD, Zhou CJ, Yang QK, Weng ML et al (2005) Identification of Porphyra lines (Rhodophyta) by AFLP DNA fingerprinting and molecular markers. Plant Mol Biol Rep 23:251–262CrossRefGoogle Scholar
  37. Sun J, Liu T, Guo B, Jin D, Weng M et al (2006) Development of SSR primers from EST sequences and their application in germplasm identification of Porphyra line (Rhodophyta). Europ J Phycol 41:329–336CrossRefGoogle Scholar
  38. Teo SS, Ho CL, Teoh S, Lee WW, Tee JM et al (2007) Analyses of expressed sequence tags (ESTs) from an agarophyte, Gracilaria changii (Gracilariales, Rhodophyta). Europ J Phycol 42:41–46CrossRefGoogle Scholar
  39. van der Strate HJ, Olsen JL, van de Zande L, Edwards KJ, Stam WT (2000) Isolation and characterization of microsatellite loci in the benthic seaweed, Cladophoropsis membranacea (Cladophorales, Chlorophyta). Mol Ecol 9:1442–1443PubMedCrossRefGoogle Scholar
  40. Varshney RK, Thiel T, Stein N, Langridge P, Graner A (2002) In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species. Cell Mol Biol Lett 7:537–546PubMedGoogle Scholar
  41. Wattier R, Dallas JF, Destombe C, Saumitou-Laprade P, Valero M (1997) Single locus microsatellites in Gracilariales (Rhodophyta): high level of genetic variability within Gracilaria gracilis and conservation in related species. J Phycol 33:868–880CrossRefGoogle Scholar
  42. Whitmer AC (2002) Microsatellite markers for the intertidal kelp Postelsia palmaeformis (Heterokontophyta; Laminariales). Molec Ecol Notes 2:469–471CrossRefGoogle Scholar
  43. Wong TKM, Ho CL, Lee WW, Rahim RA, Phang SM (2007) Analyses of expressed sequence tags (ESTs) from Sargassum binderi (Phaeophyta). J Phycol 43:528–534CrossRefGoogle Scholar
  44. Xia BM, Abbott IA (1987) New species of Polycavernosa Chang & Xia (Gracilariaceae, Rhodophyta) from the western Pacific. Phycologia 26:405–418Google Scholar
  45. Xie CT, Chen CS, Ji DH, Xu Y (2009) Characterization, development and exploitation of EST-derived microsatellites in Porphyra haitanensis Chang et Zheng (Bangiales, Rhodophyta). J Appl Phycol 21:367–374CrossRefGoogle Scholar
  46. Yamamoto H, Trono GC Jr (1994) Two new species of Gracilaria from the Philippines. In: Abbott IA (ed) Taxonomy of economic seaweeds with reference to some Pacific species, vol 4. California Sea Grant College, La Jolla, pp 95–101Google Scholar
  47. Yow YY, Lim PE, Phang SM (2011) Genetic diversity of Gracilaria changii (Gracilariaceae, Rhodophyta) from west coast, Peninsular Malaysia based on mitochondrial cox1 gene analysis. J Appl Phycol 23:219–226CrossRefGoogle Scholar
  48. Yu JK, Dake TM, Singh S, Benscher D, Li W, Gill B, Sorrells ME (2004) Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome 47:805–818PubMedCrossRefGoogle Scholar
  49. Zhou YH, Ragan MA (1995) Cloning and characterization of the nuclear gene and cDNAs for triosephosphate isomerase of the marine red algae Gracilaria verrucosa. Curr Genet 28:317–323PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Sze-Looi Song
    • 1
    • 2
  • Phaik-Eem Lim
    • 1
    • 2
  • Siew-Moi Phang
    • 1
    • 2
  • Weng-Wah Lee
    • 3
  • Khanjanapaj Lewmanomont
    • 4
  • Danilo B. Largo
    • 5
  • Nurridan Abdul Han
    • 6
  1. 1.Institute of Ocean and Earth Sciences (IOES)University of MalayaKuala LumpurMalaysia
  2. 2.Institute of Biological SciencesUniversity of MalayaKuala LumpurMalaysia
  3. 3.ACGT LaboratoriesKuala LumpurMalaysia
  4. 4.Department of Fishery Biology, Faculty of FisheriesKasetsart UniversityBangkokThailand
  5. 5.Department of BiologyUniversity San CarlosCebu CityPhilippines
  6. 6.Institute of Fisheries Research SarawakKuchingMalaysia

Personalised recommendations