Journal of Applied Phycology

, Volume 25, Issue 3, pp 831–838 | Cite as

Assessing the use of mitochondrial cox1 gene and cox2-3 spacer for genetic diversity study of Malaysian Gracilaria changii (Gracilariaceae, Rhodophyta) from Peninsular Malaysia

  • Yoon-Yen Yow
  • Phaik-Eem Lim
  • Siew-Moi Phang


Advances in DNA-based genetic markers provide the essential tools in measurement of genetic diversity relating to the evolution, biogeography, and systematics of red algae by exploiting genetic variation in the entire genome of organisms. The understanding of genetic diversity in Gracilaria changii (Gracilariaceae, Rhodophyta) will provide valuable information for conservation, plant breeding management, and strain selection for cultivation. However, information of intraspecific genetic variation is still rudimentary. In this study, two mitochondrial encoded markers, cytochrome oxidase subunit 1 (cox1) and intergenic spacer between the cytochrome oxidase subunits 2 and 3 (cox2-3 spacer) were used to investigate genetic diversity in 40 individuals of G. changii collected from 11 different geographically distinct populations from Peninsular Malaysia. Seven distinct mitochondrial haplotypes were identified with the cox1 gene and three mitochondrial haplotypes with the cox2-3 spacer. Intraspecific nucleotide differences ranged from 0 to 6 bp for the cox1 and 0–4 bp for the cox2-3 spacer, respectively. This is the first report comparing the suitability of mitochondrial markers of the cox1 gene and the cox2-3 spacer for genetic diversity studies on G. changii. The present study showed that the cox1 gene is a potential molecular marker to infer intraspecific genetic variation in red macroalgae. The cox1 marker is more variable compared to the cox2-3 spacer and revealed genetic variation and phylogeographic structure for this ecologically and economically important species.


Gracilaria changii Rhodophyta cox1 gene cox2-3 spacer Genetic diversity Phylogeography 



This study was supported by generous grants from (1) Fundamental Research Grant Scheme (FRGS) Grant: Molecular Systematics of Gracilariales and Genetic Diversity of Gracilaria changii (FP 044-2008A), (2) University of Malaya Research Grant Scheme: Genetic Diversity of Gracilaria species (PS 136/ 2008A, PS 160/2009A, and PS 303/2010B), (3) Forest Research Institute Malaysia (FRIM) Grant: Checklist and Revision of Lower Plants of Malaysia (Marine Algae) (No. 20300202030).


  1. Andreakis N, Procaccini G, Maggs C, Kooidtra WHCF (2007) Phylogeography of the invasive seaweed Asparagopsis (Bonnemaisoniales, Rhodophyta) reveals cryptic diversity. Mol Ecol 16:2285–2299PubMedCrossRefGoogle Scholar
  2. Bellorin AM, Oliveira MC, Oliveira EC (2002) Phylogeny and systematic of the marine algal family Gracilariaceae (Gracilariales, Rhodophyta) based on SSU rDNA and ITS sequences of Atlantic and Pacific species. J Phycol 38:551–563Google Scholar
  3. Broom JE, Nelson WA, Yarish C, Jones WA, Aguilar Rosas R, Aguilar Rosas LE (2002) A reassessment of the taxonomic status of Porphyra suborbiculata, Porphyra carolinensis and Porphyra lilliputiana (Bangiales, Rhodopyta) based on molecular and morphological data. Eur J Phycol 37:227–235CrossRefGoogle Scholar
  4. Byrne K, Zuccarello GC, West J, Liao ML, Kraft GT (2002) Gracilaria species (Gracilariaceae, Rhodophyta) from southeastern Australia, including a new species, Gracilaria perplexa sp. nov.: morphology, molecular relationships and agar content. Phycol Res 50:295–312CrossRefGoogle Scholar
  5. Chiasson WB, Machesky NJ, Vis ML (2003) Phylogeography of a freshwater red alga, Batrachospermum helminthosum, in North America. Phycologia 42:654–660CrossRefGoogle Scholar
  6. Chiasson WB, Johanson KG, Sherwood AR, Vis ML (2007) Phylogenetic affinities of the form taxon Chantransia pygmaea (Rhodophyta) specimens from the Hawaiian Islands. Phycologia 46:257–262CrossRefGoogle Scholar
  7. Cho GY, Kogame K, Kawai H, Boo SM (2007) Genetic diversity of Scytosiphon lomentaria (Scytosiphonaceae, Phaeophyceae) from the Pacific and Europe based on RuBisCo large subunit and spacer, and ITS nrDNA sequences. Phycologia 46:657–665CrossRefGoogle Scholar
  8. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659PubMedCrossRefGoogle Scholar
  9. Conklin KY, Kurihara A, Sherwood AR (2009) A molecular method for identification of morphologically plastic invasive algal genera Eucheuma and Kappaphycus (Rhodophyta, Gigartinales) in Hawaii. J Appl Phycol 21:691–699CrossRefGoogle Scholar
  10. Coyer JA, Hoarau G, Stam WT, Olsen JL (2004) Geographically specific heteroplasmy of mitochondrial DNA in the seaweed, Fucus serratus (Heterokontophyta, Phaeophyceae, Fucales). Mol Ecol 13:1323–1326PubMedCrossRefGoogle Scholar
  11. Donaldson SL, Chopin T, Saunders GW (2000) An assessment of the AFLP method for investigating populations structure in the red alga Chondus crispus. J Appl Phycol 12:25–35CrossRefGoogle Scholar
  12. Evans KM, Wortley AH, Mann DG (2007) An assessment of potential diatom “barcode” gene (cox1, rbcL, 18S and ITS rDNA) and their effectiveness in determining relationships in Sellaphora (Bacillariophyta). Protist 158:349–364PubMedCrossRefGoogle Scholar
  13. Famà P, Olsen JL, Stam WT, Procaccini G (2000) High level of intra- and inter-individual polymorphism in the rDNA ITS1 of Caulerpa racemosa (Chlorophyta). Eur J Phycol 35:349–356Google Scholar
  14. Féral JP (2002) How useful are the genetic markers in attempts to understand and manage marine biodiversity? J Exp Mar Biol Ecol 268:121–145CrossRefGoogle Scholar
  15. Fussmann GF, Lareau M, Abrams PA (2007) Eco-evolutionary dynamic of communities and ecosystems. Funct Ecol 21:465–477CrossRefGoogle Scholar
  16. Gan SY, Qin S, Rofina YO, Yu D, Phang SM (2003) Transient expression of lacZ in particle bombarded Gracilaria changii (Gracilariaceae, Rhodophyta). J Appl Phycol 15:351–353CrossRefGoogle Scholar
  17. Geraldino PJL, Yang EC, Boo SM (2006) Morphology and molecular phylogeny of Hypnea flexicaulis (Gigartinales, Rhodophyta) from Korea. Algae 21:417–423CrossRefGoogle Scholar
  18. Guillemin ML, Destombe C, Faugeron S, Correa JA, Valero M (2005) Development of microsatellite DNA markers in the cultivated seaweed, Gracilaria chilensis (Gracilariales, Rhodophyta). Mol Ecol Notes 5:155–157CrossRefGoogle Scholar
  19. Gurgel CFD, Fredericq S (2004) Systematics of Gracilariaceae (Gracilariales, Rhodophyata): a critical assessment based on rbcL sequence analyses. J Phycol 40:138–159CrossRefGoogle Scholar
  20. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  21. Hall MM, Vis ML (2002) Genetic variation in Batrachospermum helminthosum (Batrachospermales, Rhodophyta) among and within stream reaches using intersimple sequence repeat molecular markers. Phycol Res 50:155–162CrossRefGoogle Scholar
  22. Ho CL, Teoh S, Teo SS, Rahim RA, Phang SM (2009) Profiling the transcriptome of Gracilaria changii (Rhodophyta) in response to light deprivation. Mar Biotechnol 11:513–519PubMedCrossRefGoogle Scholar
  23. House DL, Sherwood AR, Vis ML (2008) Comparison of three organelle markers for phylogeographic inference in Batrachospermum helminthosum (Batrachospermales, Rhodophyta) from North America. Phycol Res 56:69–75CrossRefGoogle Scholar
  24. House DL, Vandenbroek AM, Vis ML (2010) Intraspecific genetic variation of Batrachospermum gelatinosum (Batrachospermales, Rhodophyta) in eastern North America. Phycol Res 49:501–507CrossRefGoogle Scholar
  25. Hu ZM, Guiry MD, Duan DL (2009) Using the ribosomal internal transcribed spacer (ITS) as a complement marker for species identification of red macroalgae. Hydrobiologia 635:279–287CrossRefGoogle Scholar
  26. Kamikawa R, Masuda I, Oyawa K, Yoshimatsu S, Sako Y (2007) Genetic variation in mitochondrial genes and intergenic spacer region in harmful algae Chattonella species. Fish Sci 73:871–880CrossRefGoogle Scholar
  27. Kim MS, Yang MY, Cho GY (2010) Applying DNA barcoding to Korean Gracilariaceae (Rhodophyta). Cryptogam Algol 31:387–401Google Scholar
  28. Kucera H, Saunders GW (2008) Assigning morphological variants of Fucus (Fucales, Phaeophyceae) in Canadian waters to recognized species using DNA barcoding. Botany 86:1065–1079CrossRefGoogle Scholar
  29. Lane CE, Lindstrom SC, Saunders GW (2007) A molecular assessment of north east Pacific Alaria species (Laminariales, Phaeophyceae) with reference to the utility of DNA barcoding. Mol Phylogenet Evol 44:634–648PubMedCrossRefGoogle Scholar
  30. Lange M, Chen YQ, Medlin LK (2002) Molecular genetic delineation of Phaeocystis species (Prymnesiophyceae) using coding and non-coding regions of nuclear and plastid genomes. Eur J Phycol 37:77–92CrossRefGoogle Scholar
  31. Le Gall L, Saunders GW (2010) DNA barcoding is a powerful tool to uncover algal diversity: a case study of the Phyllophoraceae (Gigartinales, Rhodophyta) in the Canadian flora. J Phycol 46:374–389CrossRefGoogle Scholar
  32. Lim PE, Phang SM (2004) Gracilaria species Gracilariacea, Rhodophyta) of Malaysia including two new records. Malays J Sci 23:71–80Google Scholar
  33. Lindstrom SC (2008) Cryptic species diversity and phylogenetic relationships within the Mastocarpus papillatus species complex (Rhodophyta, Phyllophoraceae). J Phycol 44:1300–1308CrossRefGoogle Scholar
  34. Marston M, Villalard-Bohnsack M (2002) Genetic variability and potential sources of Grateloupia doryphora (Halymeniaceae, Rhodophyta), an invasive species in Rhode Island waters (USA). J Phycol 38:649–658CrossRefGoogle Scholar
  35. McIvor L, Maggs CA, Provan J, Stanhope MJ (2001) rbcL sequences reveal multiple cryptic introductions of the Japanese red alga Polysiphonia harveyi. Mol Ecol 10:911–919PubMedCrossRefGoogle Scholar
  36. Milstein D, Oliveria MC, Martins FM, Matioli SR (2008) Group I introns and associated homing endonuclease genes reveals a clinal structure for Porphyra spiralis var. amplifolia (Bangiales, Rhodophyta) along the Eastern coast of South America. BMC Evol Biol 8:308PubMedCrossRefGoogle Scholar
  37. Moniz MBJ, Kaczmarska I (2010) Barcoding of diatoms: nuclear encoded ITS revisited. Protist 161:7–34PubMedCrossRefGoogle Scholar
  38. Nam KW, Maggs CA, McIvor L, Stanhope MJ (2000) Taxonomy and phylogeny of Osmunder (Rhodomelaceae, Rhodophyta) in Atlantic. Eur J Phycol 36:759–772CrossRefGoogle Scholar
  39. Newmaster SG, Fazekas AJ, Ragupathy S (2006) DNA barcoding in land plants: evaluation of rbcL in multigene tiered approach. Can J Bot 84:335–341CrossRefGoogle Scholar
  40. Pang QQ, Sui ZH, Kang KH (2010) Application of SSR and AFLP to the analyses of genetic diversity in Gracilaria lemaneiformis (Rhodopyta). J Appl Phycol 22:607–612CrossRefGoogle Scholar
  41. Phang SM (1994) Some species of Gracilaria from Peninsular Malaysia and Singapore. In: Abott IA (ed) Taxonomy of Economic Seaweeds with reference to some Pacific and Caribbean species, vol 4. California Sea Grant College Program, La Jolla, pp 125–134Google Scholar
  42. Phang SM (1998) The seaweed resources of Malaysia. In: Critchley AT, Ohno M (eds) Seaweed resources of the world. Japan International Cooperation Agency, Yokosuka, pp 79–91Google Scholar
  43. Phang SM, Shaharuddin S, Noraisah H, Sasekumar A (1996) Studies on Gracilaria changii (Gracilariales, Rhodophyta) from Malaysian mangroves. Hydrobiologia 326/327:347–352CrossRefGoogle Scholar
  44. Robba L, Russell SJ, Barker GL, Brodie J (2006) Assessing the use of the mitochondrial cox1 marker for use in DNA barcoding of red algae (Rhodophyta). Am J Bot 93:1101–1108PubMedCrossRefGoogle Scholar
  45. Rueness J (2005) Life history and molecular sequences of Gracilaria vermiculophylla (Gracilariales, Rhodophyta), a new introduction of European waters. Phycologia 44:120–128CrossRefGoogle Scholar
  46. Saunders GW (2005) Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Phil Trans R Soc B 360:1879–1888PubMedCrossRefGoogle Scholar
  47. Sherwood AR (2008) Phylogeography of Asparagopsis taxiformis (Bonnemaisoniales, Rhodophyta) in the Hawaiian Islands: two mtDNA markers support three separate introductions. Phycologia 47:79–88CrossRefGoogle Scholar
  48. Sherwood AR, Vis ML, Entwisle TJ, Necchi OJR, Presting GG (2008) Contrasting intra- versus inter-species sequence variation for representatives of the Batrachospermales (Rhodophyta): a comparison of two markers. Phycol Res 56:269–279CrossRefGoogle Scholar
  49. Sim MC, Lim PE, Gan SY, Phang SM (2007) Identification of random amplified polymorphic DNA (RAPD) marker for differentiating male from female and sporophytic thalli of Gracilaria changii (Rhodophyta). J Appl Phycol 19:763–769CrossRefGoogle Scholar
  50. Siow RS, Teo SS, Ho WY, Shukor MYA, Phang SM, Ho CL (2012) Molecular cloning and biochemical characterization of galactose-1-phosphate uridylytransferase from Gracilaria changii (Rhodophta). J Phycol 48:155–162CrossRefGoogle Scholar
  51. Steel DJ, Trewick SA, Wallis GP (2000) Heteroplasmy of mitochondrial DNA in the ophiuroid Asterobrachion constricum. J Hered 91:146–149PubMedCrossRefGoogle Scholar
  52. Teasdale BW, Klein AS (2010) Genetic variation and biogeographical boundaries within the red alga Porphyra umbilicalis (Bangiales, Rhodophyta). Bot Mar 53:417–431CrossRefGoogle Scholar
  53. Teo SS, Ho CL, Teoh S, Lee WW, Yee JM, Rahim RA, Phang SM (2007) Analyses of expressed sequence tags (ESTs) from an agarophyte Gracilaria changii (Gracilariales, Rhodophyta). Eur J Phycol 42:41–46CrossRefGoogle Scholar
  54. Teo SS, Ho CL, Teoh S, Rahim RA, Phang SM (2009) Transcriptomic analysis of Gracilaria changii Rhodophyta) in response to hyper- and hypo-osmotic stresses. J Phycol 45:1093–1099CrossRefGoogle Scholar
  55. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882CrossRefGoogle Scholar
  56. Uwai S, Yotsukura N, Serisawa Y, Muraoka D, Hiraoka M, Kogame K (2006) Intraspecific genetic diversity of Undaria pinnatifida in Japan, based on the mitochondrial of cox3 gene and ITS1 of nrDNA. Hydrobiologia 553:345–356CrossRefGoogle Scholar
  57. Vidal R (2008) Phylogeography of the genus Spongites (Corallinales, Rhodophyta) from Chile. J Phycol 44:173–182CrossRefGoogle Scholar
  58. Vis ML, Miller EJ, Hall MM (2001) Biogeographic analyses of Batrachospermum helminthosum (Batrachospermales, Rhodophyta) in North America using molecular and morphological data. Phycologia 40:2–9CrossRefGoogle Scholar
  59. Vis ML, Hodge JC, Necchi OJR (2008) Phylogeography of Batrachospermum macrosporum (Batrachospermales, Rhodophyta) from North and South America. J Phycol 44:882–888CrossRefGoogle Scholar
  60. Vis ML, Feng J, Chiasson WB, Xie SL, Stancheva R, Entwisle TJ, Wang WL (2010) Investigation of the molecular and morphological variability in Batrachospermum arcuatum (Batrachospermales, Rhodophyta) from geographically distant locations. Phycologia 49:545–553CrossRefGoogle Scholar
  61. Waittier R, Dallas JF, Destombe C, Saumitou-Laprade P, Valero M (1997) Single locus microsatellite in Gracilaria (Rhodophyta): high level of genetic variability within Gracilaria gracilis and conservation in related species. J Phycol 33:868–880CrossRefGoogle Scholar
  62. Xia BM, Abbott IA (1987) New species of Polycavernosa Chang et Xia (Gracilariacea, Rhodophyta) from the Western Pacific. Phycologia 26:405–418CrossRefGoogle Scholar
  63. Yang EC, Kim MS, Geraldino PJL, Sahoo D, Shin JA, Boo SM (2007) Mitochondrial cox1 and plastid rbcL genes of Gracilaria vermiculophylla (Gracilariaceae, Rhodophyta). J Appl Phycol 20:161–168CrossRefGoogle Scholar
  64. Yeong HY, Khalid N, Phang SM (2008) Protoplast isolation and regeneration from Gracilaria changii (Gracilariales, Rhodophyta). J Appl Phycol 20:641–651CrossRefGoogle Scholar
  65. Yow YY, Lim PE, Phang SM (2011) Genetic diversity of Gracilaria changii (Gracilariacea, Rhodopyta) from west coast, Peninsular Malaysia based on mitochondrial cox1 gene analysis. J Appl Phycol 23:219–226CrossRefGoogle Scholar
  66. Zhang XC, He Y, Xu D (2009) Screening microsatellite sequences from Gracilaria lemaneiformis and its phylogenetic analysis. Period Ocean Univ China 39:259–264Google Scholar
  67. Zhao F, Liu F, Liu J, Put O, Jr A, Duan D (2008) Genetic structure analysis of natural Sargassum muticum (Fucales, Phaeophyta) populations using RAPD and ISSR markers. J Appl Phycol 20:191–198CrossRefGoogle Scholar
  68. Zuccarello GC, West JA (2002) Phylogeography of the Bostrychia callipteraB. pinnata complex (Rhodomelaceae, Rhodophyta) and divergence rates based on nuclear, mitochondrial and plastid DNA markers. Phycologia 41:49–60CrossRefGoogle Scholar
  69. Zuccarello GC, Burger G, West JA, King RJ (1999) A mitochondrial marker for red algal intraspecific relationships. Mol Ecol 8:1443–1447PubMedCrossRefGoogle Scholar
  70. Zuccarello GC, West JA, Rueness J (2002) Phylogeography of the cosmopolitan red alga Caulacanthus ustulatus (Caulacanthaceae, Gigartinales). Phycol Res 50:163–172CrossRefGoogle Scholar
  71. Zuccarello GC, Critchley AT, Smith J, Sieber V, Lhonneur GB, West JA (2006a) Systematics and genetic variation in commercial Kappaphycus and Eucheuma (Solieriaceae, Rhodophyta). J Appl Phycol 18:643–651CrossRefGoogle Scholar
  72. Zuccarello GC, Buchanan J, West JA (2006b) Increased sampling for inferring phylogeographic patterns in Bostrychia radicans/B. moritziana (Rhodomelaceae, Rhodophyta) in the eastern USA. J Phycol 42:1349–1352CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Yoon-Yen Yow
    • 1
    • 2
  • Phaik-Eem Lim
    • 1
    • 2
  • Siew-Moi Phang
    • 1
    • 2
  1. 1.Institute of Ocean and Earth SciencesUniversity of MalayaKuala LumpurMalaysia
  2. 2.Institute of Biological SciencesUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations