Advertisement

Journal of Applied Phycology

, Volume 25, Issue 4, pp 1179–1187 | Cite as

Antioxidant properties and total phenolic contents of some tropical seaweeds of the Brazilian coast

  • Cintia D. Leal Martins
  • Fernanda Ramlov
  • Nathália Peixoto Nocchi Carneiro
  • Lisia M. Gestinari
  • Bruno F. dos Santos
  • Lilian M. Bento
  • Cintia Lhullier
  • Lidiane Gouvea
  • Eduardo Bastos
  • Paulo A. Horta
  • Angelica R. Soares
Article

Abstract

Many types of macroalgae contain a wide range of bioactive compounds that have antioxidant potential. However, in contrast to terrestrial plants, only a few studies have reported the antioxidant activity of seaweeds. Therefore, extracts from 26 marine macroalgae species from the south and southeast coasts of Brazil were evaluated for their antioxidant activity, using the 2,2-diphenyl-2-picrylhydrazyl hydrate (DPPH) method and β-carotene/linoleic acid assay, and their total phenolic contents, through Folin–Ciocalteu method. Padina gymnospora, Sargassum vulgare, and Osmundaria obtusiloba presented the highest values of total phenolic content. Using β-carotene bleaching assay, Colpomenia sinuosa, Dictyota sp., Dichotomaria marginata, Ganonema farinosum, and Spyridia clavata presented up to 65 % of antioxidant activity. Some of the extracts showed more than 60 % of inhibition of DPPH in the lowest concentration (0.01 mg/mL), including Amansia sp., Bostrychia tenella, Cryptonemia seminervis, Hypnea musciformis, Plocamium brasiliense (1), and S. clavata. Both Amansia sp., and C. seminervis presented the most relevant antioxidant potential, with percentage of inhibition greater than 70 % in the three tested concentrations. These two species were then analyzed by nuclear magnetic resonance spectroscopy (NMR) and were selected for guided fractionation bioassay. They both presented lipid compounds, fatty acids, esters of fatty acids, triglycerides, and sterols as major components. The fractionation of extracts revealed that the organic fractions were responsible for the antioxidant activity. The results obtained through this work indicate that the analyzed seaweeds are a promising source of compounds with high antioxidant potential.

Keywords

Macroalgae DPPH β-Carotene bleaching Total phenolics 

Notes

Acknowledgments

The authors thank CAPES, CNPq and FAPERJ for financial support.

References

  1. Alves MGCF, Dore CMP, Castro AJG, Nascimento MS, Cruz AKM, Soriano EM, Benevides NMB, Leite EL (2011) Antioxidant, cytotoxic and hemolytic effects of sulfated galactans from edible red alga Hypnea musciformis. J Appl Phycol 24:1217–1227CrossRefGoogle Scholar
  2. Bitencourt FS, Figueiredo JG, Mota MR, Bezerra CC, Silvestre PP, Vale MR, Nascimento KS, Sampaio AH, Nagano CS, Saker-Sampaio S, Farias WR, Cavada BS, Assreuy AM, de Alencar NM (2008) Antinociceptive and anti-inflammatory effects of a mucin-binding agglutinin isolated from the red marine alga Hypnea cervicornis. Naunyn Schmiedebergs Arch Pharmacol 377:139–48CrossRefGoogle Scholar
  3. Cano A, Hernández-Ruíz J, García-Cánovas F, Acosta M, Arnao MB (1998) An end-point method for estimation of the total antioxidant activity in plant material. Phytochem Anal 9:196–202CrossRefGoogle Scholar
  4. Cechinel Filho V, Yunes RA (1998) Estudo químico de plantas medicinais orientado para a análise biológica. Obtenção, determinação e modificação estrutural de compostos bioativos. In: Yunes RA, Calixto JB (eds) Plantas medicinais sob a ótica da química medicinal moderna, 1st edn. Argos, Chapecó, pp 97–104Google Scholar
  5. Costa LS, Fidelis GP, Cordeiro SL, Oliveira RM, Sabry DA, Câmara RB, Nobre LT, Costa MS, Almeida-Lima J, Farias EH, Leite EL, Rocha HA (2010) Biological activities of sulfated polyssacharides from tropical seaweeds. Biomed Pharmacother 64:21–28PubMedCrossRefGoogle Scholar
  6. Duarte ME, Noseda DG, Noseda MD, Tulio S, Pujol CA, Damonte EB (2001) Inhibitory effect of sulfated galactans from the marine alga Bostrychia montagnei on herpes simplex virus replication in vitro. Phytomedicine 8:53–8PubMedCrossRefGoogle Scholar
  7. Ferreira WJ, Amaro R, Cavalcanti DN, de Rezende CM, da Silva VA, Barbosa JE, Paixão IC, Teixeira VL (2010) Anti-herpetic activities of chemical components from the Brazilian red alga Plocamium brasiliense. Nat Prod Commun 5:1167–1170PubMedGoogle Scholar
  8. Fitzgerald C, Gallagher E, Tasdemir D, Hayes M (2011) J Agric Food Chem 59:6829–6836PubMedCrossRefGoogle Scholar
  9. Jang-Kyoung H, Lee-Bong H, Choi-Byoung W, Lee-Hyi S, Shin-Jong H (2005) Chromenes from the brown alga Sargassum siliquastrum. J Nat Prod 68:719–23Google Scholar
  10. Karagözler A, Erdag B, Emek Y, Uygun D (2008) Antioxidant activity and proline content of leaf extracts from Dorystoechas hastata. Food Chem 111:400–407CrossRefGoogle Scholar
  11. Kelman D, Posner EK, McDermi KJ, Tabandera NK, Wright PR, Wright AD (2012) Antioxidant activity of Hawaiian marine algae. Mar Drugs 10:403–416PubMedCrossRefGoogle Scholar
  12. Kohen R, Nyska A (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 31:620–650CrossRefGoogle Scholar
  13. Kuda T, Ikemori T (2009) Minerals, polysaccharides and antioxidant properties of aqueous solutions obtained from macroalgal beach-casts in the Noto Peninsula, Ishikawa, Japan. Food Chem 112:575–581CrossRefGoogle Scholar
  14. Langebartels C, Wohlgemuth H, Kschieschan S, Grün S, Sandermann H (2002) Oxidative burst and cell death in ozone-exposed plants. Plant Physiol Biochem 40:567–575CrossRefGoogle Scholar
  15. Liu M, Hansen PE, Lin X (2011) Bromophenols in marine algae and their bioactivities. Mar Drugs 9:1273–1292PubMedCrossRefGoogle Scholar
  16. Marco GJ (1968) A rapid method for evaluation of antioxidants. J Am Oil Chem Soc 45:594–598CrossRefGoogle Scholar
  17. Matanjun P, Mohamed S, Mustapha NM, Muhammad K, Ming CH (2008) Antioxidant activities and phenolics content of eight species of seaweeds from north Borneo. J Appl Phycol 20:367–373CrossRefGoogle Scholar
  18. Matsukawa R, Dubinsky Z, Kishimoto E, Masaki K, Masuda Y, Takeuchi T, Chihaara M, Yamamoto Y, Niki E, Karube I (1997) A comparison of screening methods for antioxidant activity in seaweeds. J Appl Phycol 9:29–35CrossRefGoogle Scholar
  19. Miller HE (1971) A simplified method for the evaluation of antioxidants. J Am Oil Chem Soc 48:91CrossRefGoogle Scholar
  20. Molyneux P (2004) The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J Sci Technol 26:211–219Google Scholar
  21. Nahas R, Abatis D, Anagnostopoulou MA, Kefalas P, Vagias C, Roussis V (2007) Radical-scavenging activity of Aegean Sea marine algae. Food Chem 102:577–581CrossRefGoogle Scholar
  22. Neushul M (1990) Antiviral carbohydrates from marine red algae. Hydrobiologia 204/205:99–104CrossRefGoogle Scholar
  23. Neves SA, Freitas ALP, Sousa BW, Rocha MLA, Correia MVO, Sampaio DA, Viana GSB (2007) Antinociceptive properties in mice of a lectin isolated from the marine alga Amansia multifida Lamouroux. Braz J Med Biol Res 40:127–134PubMedCrossRefGoogle Scholar
  24. Nishida TA (1996) A method for screening potential antioxidant activity. J Biotech 51:149–155CrossRefGoogle Scholar
  25. Peng J, Yuan J, Wu C, Wang J (2011) Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health. Mar Drugs 9:1806–1828PubMedCrossRefGoogle Scholar
  26. Reische DW, Lillard DA, Eitenmiller RR (2002) Antioxidants. In: Akoh CC, Min DB (eds) Food lipids. Marcel Dekker, New York, pp 489–516Google Scholar
  27. Rocha FD, Pereira RC, Kaplan MAC, Teixeira VL (2007) Produtos naturais de algas marinhas e seu potencial antioxidante. Rev Bras Farmacogn 17:631–639CrossRefGoogle Scholar
  28. Ruberto G, Baratta MT, Biondi DM, Amico V (2001) Antioxidant activity of extracts of the marine algal genus Cystoseira in a micellar model system. J Appl Phycol 13:403–407CrossRefGoogle Scholar
  29. Sachindra N, Sato E, Maeda H, Hosokawa M, Niwano Y, Kohno M (2007) Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites. J Agric Food Chem 55:8516–8522PubMedCrossRefGoogle Scholar
  30. Shanab SM, Shalaby EA, El-Fayoumy (2011) Enteromorpha compressa exhibits potent antioxidant activity. J Biomed Biotech 2011:1–11CrossRefGoogle Scholar
  31. Sharma YK, Davis KR (1997) The effects of ozone on antioxidant responses in plants. Free Radical Biol Med 23:480–488CrossRefGoogle Scholar
  32. Shibata T, Ishimaru K, Kawaguchi S, Yoshikawa H, Hama Y (2008) Antioxidant activities of phlorotannins isolated from Japanese Laminariaceae. J Appl Phycol 20:705–711CrossRefGoogle Scholar
  33. Sousa MB, Pires KMS, Alencar DB, Sampaio AH, Saker-Sampaio S (2008) α- and β-carotene, and α-tocopherol in fresh seaweeds. Ciênc Tecnol Aliment 28:953–958CrossRefGoogle Scholar
  34. Subbiah M, Sundaresan B (2012) Antitumor activity of Chondrococcus hornemanni and Spyridia fusiformis on Dalton's lymphoma ascites in mice. Bangladesh J Pharmacol 7.Google Scholar
  35. Sultana B, Anwar F, Przybylski R (2007) Antioxidant activity of phenolic components present in barks of Azadirachta indica, Terminalia arjuna, Acacia nilotica, and Eugenia jambolana Lam. trees. Food Chem 104:1106–14CrossRefGoogle Scholar
  36. Tait A, Ganzerli S, Di Bella M (1996) Synthesis and free radical scavenging activity of 4-(2H-1,2,4-benzothiadiazine-1,1-dioxide-3-yl)-2,6-bis(1,1-dimethylethyl)phenols. Tetrahedron 52:1287–1296CrossRefGoogle Scholar
  37. Takamatsu S, Hodges TW, Rajbhandari I, Gerwick WH, Hamann MT, Nagle DG (2003) Marine natural products as novel antioxidant prototypes. J Nat Prod 66:605–608PubMedCrossRefGoogle Scholar
  38. Talarico LB, Zibetti RG, Faria PC, Scolaro LA, Duarte ME, Noseda MD, Pujol CA, Damonte EB (2004) Anti-herpes simplex virus activity of sulfated galactans from the red seaweeds Gymnogongrus griffithsiae and Cryptonemia crenulata. Int J Biol Macromol 34:63–71PubMedCrossRefGoogle Scholar
  39. Targett NM, Arnold TM (1998) Predicting the effects of brown algal phlorotannins on marine herbivores in tropical and temperate oceans. J Phycol 34:195–205CrossRefGoogle Scholar
  40. Thomas NV, Kim S (2011) Potential pharmacological applications of polyphenolic derivatives from marine brown algae. Inv Toxic Pharmacology 32:325–335Google Scholar
  41. Tovar CZ, Ballantine DL (2000) Multiple antimicrobial activities of the marine alga Spyridia filamentosa (Ceramiaceae, Rhodophyta). Bot Mar 43:233–238Google Scholar
  42. Vatan O, Celikler S, Yildiz G (2011) In vitro antigenotoxic and anti-oxidative capacity of Hypnea musciformis (Wulfen) Lamour. Extract in human lymphocytes. Afr J Biotechnol 10:484–490Google Scholar
  43. Wu XJ, Hansen C (2008) Antioxidant capacity, phenolic content, polysaccharide content of Lentinus edodes grown in whey permeate based submerged culture. J Food Sci 73:M1–M8PubMedCrossRefGoogle Scholar
  44. Yan XJ, Nagata T, Fan X (1998) Antioxidative activities in some seaweeds. Plant Food Hum Nutr 52:253–262CrossRefGoogle Scholar
  45. Yan X, Chuda Y, Suzuki M, Nagata T (1999) Fucoxanthin as the major antioxidant in Hijikia fusiformis, a common edible seaweed. Biosci Biotech Biochem 63:605–607CrossRefGoogle Scholar
  46. Zhang W, Duan X, Huang H, Zhang Y, Wang B (2007) Evaluation of 28 marine algae from the Qingdao coast for antioxidative capacity and determination of antioxidant efficiency and total phenolic content of fractions and subfractions derived from Symphyocladia latiuscula (Rhodomelaceae). J Appl Phycol 19:97–108CrossRefGoogle Scholar
  47. Zubia M, Deslandes E (2008) Alginate, mannitol, phenolic compounds and biological activities of two range-extending brown algae, Sargassum mangarevense and Turbinaria ornata (Phaeophyta: Fucales), from Thaiti (French Polynesia). J Appl Phycol 6:1033–1043CrossRefGoogle Scholar
  48. Zubia M, Robledo D, Freile-Pelegrin Y (2007) Antioxidant activities in tropical marine macroalgae from the Yucatan Peninsula, Mexico. J Appl Phycol 19:449–458CrossRefGoogle Scholar
  49. Zubia M, Fabre MS, Kerjean V, Le Lann K, Stiger-Pouvreau V, Fauchon M, Deslandes E (2009) Antioxidant and antitumoural activities of some Phaeophyta from Brittany coasts. Food Chem 116:693–701CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Cintia D. Leal Martins
    • 1
  • Fernanda Ramlov
    • 1
  • Nathália Peixoto Nocchi Carneiro
    • 3
  • Lisia M. Gestinari
    • 2
  • Bruno F. dos Santos
    • 3
  • Lilian M. Bento
    • 3
  • Cintia Lhullier
    • 1
  • Lidiane Gouvea
    • 1
  • Eduardo Bastos
    • 1
  • Paulo A. Horta
    • 1
  • Angelica R. Soares
    • 2
  1. 1.Departamento de BotânicaUniversidade Federal de Santa CatarinaFlorianópolisBrazil
  2. 2.Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de MacaéUniversidade Federal do Rio de JaneiroMacaéBrazil
  3. 3.Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de MacaéUniversidade Federal do Rio de JaneiroMacaéBrazil

Personalised recommendations