Journal of Applied Phycology

, Volume 25, Issue 3, pp 757–761

Algal biomass anaerobic biodegradability

Article

Abstract

We conducted a series of biodegradation studies using microalgae (Arthrospira maxima and Nannochloropsis sp.) and macroalgae (Gelidium corneum and Cladophora glomerata) to elucidate algal biodegradability in wastewater sludge under anaerobic conditions. Algal biodegradability was evaluated according to ASTM D5210-92. The results indicate that A. maxima biodegraded to a greater extent (70 %) than Nannochloropsis sp. (40 %). The low level of mineralization for Nannochloropsis sp. is due to the presence of high level of lipids (37 %). For macroalgal samples, red algae fiber pulped from G. corneum biodegraded comparably to cellulose controls. However, C. glomerata biodegradation is about 46 %. A sample compositional analysis revealed that it contained about 24.5 % ash, which is directly accountable for an observed low degree of biodegradation. Algal anaerobic biodegradability is important to facilitate sludge digester design and performance evaluation. It is particularly useful when waste residual materials from algal biofuel processing are used for energy production.

Keywords

Microalgae Macroalgae Biofuel Biodegradability Anaerobic digestion Waste management 

References

  1. ASTM D5210 (1992) Standard test method for determining the anaerobic biodegradation of plastic materials in the presence of municipal sewage sludge. American Society for Testing and Materials, Philadelphia, USAGoogle Scholar
  2. Baldwin TD, Stinson J, Ham RK (1998) Decomposition of specific materials buried within sanitary landfills. J Environ Eng 124:1193–1202CrossRefGoogle Scholar
  3. Battimelli A, Torrijos M, Moletta R, Delgenès JP (2010) Slaughterhouse fatty waste saponification to increase biogas yield. Bioresour Technol 101:3388–3393PubMedCrossRefGoogle Scholar
  4. Belhassen R, Boufi S, Vilaseca F, López JP, Méndez JA, Franco E, Pèlach MA, Mutjé P (2009) Biocomposites based on alfa fibers and starch-based biopolymer. Polym Adv Technol 20:1068–1075CrossRefGoogle Scholar
  5. Berlowitz-Tarrant L, Tukumo T, Shivkumar S (1998) Algal plastics. US Patent 5779960 (14 July 1998)Google Scholar
  6. Bold H, Wynne M (1985) Introduction to the algae, 2nd edn. Prentice Hall, Englewood CliffsGoogle Scholar
  7. Bootsma HA, Jensen ET, Young EB, Berges JA (2004) Cladophora research and management in the Great Lakes, Proceedings of a Workshop Held at the Great Lakes WATER Institute, University of Wisconsin-Milwaukee, December 8, 2004Google Scholar
  8. Chen PH, Osward WJ (1998) Thermochemical treatment for algal fermentation. Environ Int 24:889–897CrossRefGoogle Scholar
  9. Choudhary P, Mohanty S, Nayak SK, Unnikrishnan L (2011) Poly(l-lactide)/polypropylene blends: evaluation of mechanical, thermal, and morphological characteristics. J Appl Polym Sci 121:3223–3237CrossRefGoogle Scholar
  10. Cirne DG, Paloumet X, Bjornsson L, Alves MM, Mattiasson B (2007) Anaerobic digestion of lipid-rich waster—effects of lipid concentration. Renew Energy 32:965–975CrossRefGoogle Scholar
  11. Deng L, Zhu X, Wang X, Su Y, Su H (2007) Biosorption of copper(II) from aqueous solutions by green alga Cladophora fascicularis. Biodegradation 18:393–402PubMedCrossRefGoogle Scholar
  12. Franklin S, Somanchi A, Wee J, Rudenko G, Moseley JL, Rakitsky W (2011) Food compositions comprising tailored oils. US Patent 2011/0293785 (1 December 2011)Google Scholar
  13. Griffiths JM, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507CrossRefGoogle Scholar
  14. Guerrero P, Beatty E, Kerry JP, De La Caba K (2012) Extrusion of soy protein with gelatin and sugars at low moisture content. J Food Eng 110:53–59CrossRefGoogle Scholar
  15. Gupta B, Revagade N, Hilborn J (2007) Poly(lactic acid) fiber: an overview. Prog Polym Sci 32:455–482CrossRefGoogle Scholar
  16. Han SO, Kim HS, Yoo YJ, Seo, YB, Lee MW (2009) Algae fiber-reinforced biocomposite and method for preparing the same. US Patent 2009/0197994 (6 August 2009)Google Scholar
  17. Hazlebeck DA, Dunlop EH (2008) Photosynthetic oil production with high carbon dioxide utilization. US Patent 20080090284 (17 April 2008)Google Scholar
  18. Holdt SL, Kraan S (2011) Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 23:543–597CrossRefGoogle Scholar
  19. Itavaara M, Vikman M (1996) An overview of methods for biodegradability testing of biopolymers and packaging materials. J Environ Polym Degr 4:29–36CrossRefGoogle Scholar
  20. Kaseem M, Hamad K, Deri F (2012) Preparation and studying properties of polybutene-1/thermoplastic starch blends. J Appl Polym Sci 124:3092–3098CrossRefGoogle Scholar
  21. Kaulbach ES, Szymanowski JE, Fein JB (2005) Surface complexation modeling of proton and Cd adsorption onto an algal cell wall. Environ Sci Technol 39:4060–4065PubMedCrossRefGoogle Scholar
  22. Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30:673–690PubMedCrossRefGoogle Scholar
  23. Lee YC, Chang SP (2011) The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Bioresour Technol 102:5297–5304PubMedCrossRefGoogle Scholar
  24. Lee MW, Han SO, Seo YB (2008) Red algae fibre/poly(butylene succinate) biocomposites: the effect of fibre content on their mechanical and thermal properties. Compos Sci Technol 68:1266–1272CrossRefGoogle Scholar
  25. McHardy BM, George JJ (1990) Bioaccumulation and toxicity of zinc in the green alga, Cladophora glomerata. Environ Pollut 66:55–66PubMedCrossRefGoogle Scholar
  26. Mihranyan A (2011) Cellulose from Cladophorales green algae: from environmental problem to high-tech composite materials. J Appl Polym Sci 119:2449–2460CrossRefGoogle Scholar
  27. Newcomb T (2012) Retrieved from http://business.time.com/2012/09/13/biofuel-industry‐scales‐up‐for‐airlines/. Accessed on 20 Sept 2012
  28. Özer A, Özer D, Dursun G, Bulak S (1999) Cadmium(II) adsorption on Cladophora crispata in batch stirred reactors in series. Waste Manage 19:233–240CrossRefGoogle Scholar
  29. Rathje W, Murphy C (1992) Rubbish! The archaeology of garbage. HarperCollins, New YorkGoogle Scholar
  30. Razaq A, Nyholm L, Sjödin M, Strømme M, Mihranyan A (2012) Paper-based energy-storage devices comprising carbon fiber-reinforced polypyrrole-Cladophora nanocellulose composite electrodes. Adv Energy Mater 2:445–454CrossRefGoogle Scholar
  31. Salerno M, Nurdogan Y, Lundquist TJ (2009) Biogas production from algae biomass harvested at wastewater treatment ponds. Bioenergy Eng Conf, WA, October 11–14Google Scholar
  32. Seo YB, Lee YW, Lee CH, You HC (2010) Red algae and their use in papermaking. Bioresour Technol 101:2549–2553PubMedCrossRefGoogle Scholar
  33. Sharma NK, Tiwari SP, Tripathi K, Rai AK (2011) Sustainability and cyanobacteria (blue-green algae): facts and challenges. J Appl Phycol 23:1059–1081CrossRefGoogle Scholar
  34. Shi B, Palfery D (2010) Plant polymer biodegradation in relation to global carbon management. Carbohydr Polym 82:401–404CrossRefGoogle Scholar
  35. Shi B, Palfery D (2012) Temperature‐dependent polylactic acid (PLA) anaerobic biodegradability. Int J Environ Waste Management 10:297–306Google Scholar
  36. Shi B, Shannon TG (2009) Technology assessment of non-wood alternative natural fibers 3. Use of Cladophora as a low cost material for paper handsheets. Kimberly-Clark Corporation, NeenahGoogle Scholar
  37. Shi B, Shlepr M, Palfery D (2011) Effect of blend composition and structure on biodegradation of starch/ecoflex-filled polyethylene films. J Appl Polym Sci 120:1808–1816CrossRefGoogle Scholar
  38. Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27:409–416PubMedCrossRefGoogle Scholar
  39. Skjanes K, Lindblad P, Muller J (2007) BioCO2—a multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products. Biomol Eng 24:405–413Google Scholar
  40. Slezak L (2009) Anaerobic digestion of algae at Sunnyvale WPCP. Brown and Caldwell, SeattleGoogle Scholar
  41. Song F, Tang DL, Wang XL, Wang YZ (2011) Biodegradable soy protein isolate-based materials: a review. Biomacromolecules 12:3369–3380PubMedCrossRefGoogle Scholar
  42. Stromme M, Nyholm L, Mihranyan A (2010) Composite materials including an intrinsically conducting polymer, and methods and devices. US Patent 2010/0266896Google Scholar
  43. Tarrant LB, Berlowitz A, Tukumo T (1994) Algal pulps and pre‐pulps and paper products made therefrom. WO Patent 1994/04745Google Scholar
  44. Tchobanoglous G, Burton FL, Stensel HD (2002) Wastewater engineering: treatment and reuse, 4th edn. McGraw-Hill, New YorkGoogle Scholar
  45. Wang S, Yan Q, Miao H, Ruan W (2009) Effect of inoculum to substrate ratios on methane production in mixed anaerobic digestion of pig manure and blue-green algae. Nongye Gongcheng Xuebao/Trans Chin Soc Agr Eng 25(5):172–176CrossRefGoogle Scholar
  46. Yen HW, Brune DE (2007) Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour Technol 98:130–134PubMedCrossRefGoogle Scholar
  47. Yoo TW, Yoon HG, Choi SJ, Kim MS, Kim YH, Kim WN (2010) Effects of compatibilizers on the mechanical properties and interfacial tension of polypropylene and poly(lactic acid) blends. Macromol Res 18:583–588CrossRefGoogle Scholar
  48. You HC, Park JH (2008) Pulp and paper made from Rhodophyta and manufacturing method thereof. US Patent 20080057547 (6 March 2008)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Corporate Research and EngineeringKimberly-Clark CorporationNeenahUSA

Personalised recommendations