Advertisement

Journal of Applied Phycology

, Volume 25, Issue 2, pp 425–432 | Cite as

Seasonal composition of lipids, fatty acids, and sterols in the edible red alga Grateloupia turuturu

  • Melha Kendel
  • Aurélie Couzinet-Mossion
  • Michèle Viau
  • Joël Fleurence
  • Gilles Barnathan
  • Gaëtane Wielgosz-Collin
Article

Abstract

Composition of lipids, sterols, fatty acids (FA), and phospholipids in the edible Rhodophyta Grateloupia turuturu from Britanny, France, was investigated over four seasons in order to identify compounds with potential benefits in health and nutrition. The lipid content was found to vary from 3.3 to 4.1 % dry weight. No marked variations were observed for glycolipids accounting for 42.3–46.8 %, whereas neutral lipids and phospholipids fluctuated from 20.1 % (summer) to 41.8 % (winter), and 11.2 % (winter) to 33.4 % (summer), respectively. Polyunsaturated FA of the total lipids were found from 20.4 % (winter) to 31.1 % (summer), including 20:5 ω3 acid as the major one (up to 16.3 % in summer). Phosphatidylcholine (20.0–43.7 %) and phosphatidylserine (24.6–37.5 %) were the dominant phospholipids in all seasons. Compounds of interest were identified in minor amounts such as squalene, α-tocopherol, phytonadione (vitamin K1), cholesteryl formate, cholest-4-en-3-one, and cholesta-4,6-dien-3-one. Cholesterol was the major sterol with a lower content in spring and summer.

Keywords

Seaweeds Grateloupia turuturu Rhodophyta Lipids Fatty acids Sterols Phospholipids 

Notes

Acknowledgments

The authors thank Dr Claire Denis, Mr Pierre Gaudin, and Mrs Vony Rabesaotra from University of Nantes, Laboratory Mer-Molécules-Santé (MMS), EA 2160, for their technical assistance, in collecting alga, measurement, and in data analysis. This work is part of Melha Kendel’s Ph.D., supported by a grant from the Conseil Général de la Loire Atlantique, France.

References

  1. Al-Hasan RH, Hantash FM, Radwan SS (1991) Enriching marine macroalgae with eicosatetranoic (arachidonic) and eicosapentaenoic acids by chilling. Appl Microbiol Biotechnol 35:530–535CrossRefGoogle Scholar
  2. Bocanegra A, Bastida S, Benedí J, Ródenas S, Sánchez-Muniz FJ (2009) Characteristics and nutritional and cardiovascular-health properties of seaweeds. J Med Food 12:236–258PubMedCrossRefGoogle Scholar
  3. Christie WW (2012) The lipid library, http://lipidlibrary.aocs.org/. Accessed 20 February 2012
  4. Cyberlipid Center, http://www.cyberlipid.org/. Accessed 20 February 2012
  5. Daines AM, Payne RJ, Humphries ME, Abell AD (2003) The synthesis of naturally occurring vitamin K and vitamin K analogues. Curr Org Chem 7:1–15CrossRefGoogle Scholar
  6. Das B (2005) The science behind squalene-the human antioxidant, 2nd edn. Toronto Medical Publishing, CanadaGoogle Scholar
  7. Dawczynski C, Schubert R, Jahreis G (2007) Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem 103:891–899CrossRefGoogle Scholar
  8. Denis C, Morançais M, Li M, Deniaud E, Gaudin P, Wielgosz-Collin G, Barnathan G, Jaouen P, Fleurence J (2010) Study of the chemical composition of edible red macroalgae Grateloupia turuturu from Brittany (France). Food Chem 119:913–917CrossRefGoogle Scholar
  9. Fleurence J, Gutbier G, Mabeau S, Leray C (1994) Fatty acids from 11 marine macroalgae of the French Brittany coast. J Appl Phycol 6:527–532CrossRefGoogle Scholar
  10. Gancheva KZ, Dimitrova-Konaklieva SD, Ljubomirov KS, Simeonof PS (2003) A comparative study on the sterol composition of some brown algae from the Black Sea. J Serb Chem Soc 68:269–275CrossRefGoogle Scholar
  11. Gavio B, Fredericq S (2002) Grateloupia turuturu (Halymeniaceae, Rhodophyta) is the correct name of the non-native species in the Atlantic known as Grateloupia doryphora. Eur J Phycol 37:349–360CrossRefGoogle Scholar
  12. Hernández-Carmona G, Carrillo-Domínguez S, Arvizu-Higuera DL, Rodríguez-Montesinos YE, Murillo-Álvarez JI, Muñoz-Ochoa M, Castillo-Domínguez RM (2009) Monthly variation in the chemical composition of Eisenia arborea J.E. Areschoug. J Appl Phycol 21:607–616CrossRefGoogle Scholar
  13. Hosokawa YY, Hakamata H, Murakami T, Kusu F (2010) Electrosynthesis of cholesta-4,6-dien-3-one from cholesterol on a laboratory synthetic scale. Tetrahedron Lett 51:129–132CrossRefGoogle Scholar
  14. Hotimchenko SV (2002) Fatty acid composition of algae from habitats with varying amounts of illumination. Russ J Mar Biol 28:218–220CrossRefGoogle Scholar
  15. Hudson JB, Kim JH, Lee MK, DeWreede RE, Hong YK (1999) Antiviral compounds in extracts of Korean seaweeds: Evidence for multiple activities. J Appl Phycol 10:427–434CrossRefGoogle Scholar
  16. Khotimchenko SV, Klochkova NG, Vaskovsky VE (1990) Polar lipids of marine macrophytic algae as chemotaxonomic markers. Biochem Syst Ecol 18:93–101CrossRefGoogle Scholar
  17. Khotimchenko SV (2005) Lipids from the marine alga Gracilaria verrucosa. Chem Nat Compd 41:285–288CrossRefGoogle Scholar
  18. Kumari P, Kumar M, Gupta V, Reddy CRK, Jha B (2010) Tropical marine macroalgae as potential sources of nutritionally important PUFAs. Food Chem 120:749–757CrossRefGoogle Scholar
  19. Lee B, Sur BJ, Han JJ, Shim I, Her S, Lee HJ, Hahm DH (2010) Krill phosphatidylserine improves learning and memory in Morris water maze in aged rats. Prog Neuropsychopharmacol Biol Psychiatry 34:1085–1093PubMedCrossRefGoogle Scholar
  20. Matanjun P, Mohamed S, Mustapha NM, Muhammad K (2009) Nutrient content of tropical edible seaweeds, Eucheuma cottonii, Caulerpa lentillifera and Sargassum polycystum. J Appl Phycol 21:75–80CrossRefGoogle Scholar
  21. Matsuhiro B, Alejandro U (1984) Sterols of some Chilean algae. Biochem Syst Ecol 2:145–147CrossRefGoogle Scholar
  22. Naghibi F, Tabatabai Yazdi M, Sahebgharani M, Noori Daloii MR (2002) Microbial transformation of cholesterol by Mycobacterium smegatis. J Sci 13:103–106Google Scholar
  23. Nelson MM, Phleger CF, Nichols PD (2002) Seasonal lipid composition in macroalgae of the northeastern Pacific Ocean. Bot Mar 45:58–65CrossRefGoogle Scholar
  24. Netscher T (2007) Synthesis of Vitamin E. Vitam Horm 76:155–202PubMedCrossRefGoogle Scholar
  25. Noda H (1993) Health benefits and nutritional properties of nori. J Appl Phycol 5:255–258CrossRefGoogle Scholar
  26. Pang SJ, Xiao T, Shan TF, Wang ZF, Gao SQ (2006) Evidences of the intertidal red alga Grateloupia turuturu in turning Vibrio parahaemolyticus into non-culturable state in the presence of light. Aquaculture 260:369–374CrossRefGoogle Scholar
  27. Plouguerné E, Kikuchi H, Oshima Y, Deslandes E, Stiger-Pouvreau V (2006) Isolation of cholest-5-en-3-ol formate from the red alga Grateloupia turuturu Yamada and its chemotaxonomic significance. Biochem Syst Ecol 34:714–717CrossRefGoogle Scholar
  28. Plouguerné E, Hellio C, Deslandes E, Veron E, Stiger-Pouvreau V (2008) Anti-microfouling activities in extracts of two invasive algae: Grateloupia turuturu and Sargassum muticum. Bot Mar 51:202–208CrossRefGoogle Scholar
  29. Pohl P, Zurheide F (1979) Fatty acids and lipids of marine algae and the control of their biosynthesis by environmental factors. In: Hoppe HA, Levring T, Tanaka Y (eds) Marine algae in pharmaceutical science. Walter de Gruyter, Berlin, pp 473–523Google Scholar
  30. Rodríguez-Montesinos YE, Hernández-Carmona G (1991) Seasonal and geographic variations of Macrocystis pyrifera chemical composition at the western coast of Baja California. Cienc Mar 17:91–107Google Scholar
  31. Sanina NM, Goncharova SN, Kostetsky EY (2004) Fatty acid composition of individual polar lipid classes from marine macrophytes. Phytochemistry 65:721–730PubMedCrossRefGoogle Scholar
  32. Stolyhwo A, Martin M, Guiochon G (1987) Analysis of lipid classes by HPLC with the evaporative light scattering detector. J Liq Chromatogr 10:1237–1253CrossRefGoogle Scholar
  33. Suzuki K, Shimizu T, Nakata T (1998) The cholesterol metabolite cholest-4-en-3-one and its 3-oxo derivatives suppress body weight gain, body fat accumulation and serum lipid concentration in mice. Bioorg Med Chem Lett 18:2133–2138CrossRefGoogle Scholar
  34. Yang JL, Liu LL, Wang BG, Shi YP (2010) Secondary metabolites from Grateloupia turuturu and their chemotaxonomic significance. Biochem Syst Ecol 38:850–852CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Melha Kendel
    • 1
  • Aurélie Couzinet-Mossion
    • 1
  • Michèle Viau
    • 3
  • Joël Fleurence
    • 2
  • Gilles Barnathan
    • 1
  • Gaëtane Wielgosz-Collin
    • 1
  1. 1.Faculté des Sciences Pharmaceutiques et BiologiquesLUNAM Université, Université de Nantes, Groupe Mer-Molécules-Santé MMS, EA 2160, Institut Universitaire Mer et Littoral FR3473 CNRSNantes Cedex 1France
  2. 2.Faculté des Sciences et des TechniquesLUNAM université, Université de Nantes, Groupe Mer-Molécules-Santé MMS, EA 2160, Institut Universitaire Mer et Littoral FR3473 CNRSNantes Cedex 3France
  3. 3.UR 1268, Biopolymères Interactions AssemblagesInstitut National de la Recherche Agronomique (INRA)NantesFrance

Personalised recommendations