Journal of Applied Phycology

, Volume 25, Issue 1, pp 299–309 | Cite as

Antifouling chromanols isolated from brown alga Sargassum horneri

  • Ji Young Cho


Biofouling in aquatic environments have a wide range of detrimental effects on man-made structures and cause economic loss. Current antifouling compounds including Diuron, dichlorofluanid, and Irgarol are toxic and can accumulate in marine environments. Thus, effective and environmentally friendly antifoulants are needed. Six structurally similar compounds were isolated from the brown alga, Sargassum horneri, based on bioactivity-guided isolation by reversed-phased liquid flash chromatography and high-performance liquid chromatography. Six chemical constituents possessing antifouling activities were identified as chromanols consisting of polyprenyl chain by nuclear magnetic resonance and mass spectroscopy. Antifouling activities of these six compounds were determined against representative fouling organisms including a hard fouling organism the mussel Mytilus edulis, a soft fouling macroalga Ulva pertusa, the biofouling diatom Navicula annexa, and the biofouling bacteria Pseudomonas aeruginosa KNP-3 and Alteromonas sp. KNS-8. The compounds could inhibit larvae settlement of mussel M. edulis with an EC50 of 0.11–3.34 μg mL−1, spore settlement of U. pertusa zoospores (EC50 of 0.01–0.43 μg mL−1), and the diatom N. annexa (EC50 of 0.008–0.19 μg mL−1). The two biofouling bacteria were sensitive to the tested compounds (minimum inhibitory concentration of 1.68–36.8 and 1.02–30.4 μg mL−1, respectively). From toxicity tests on juvenile Sebastes schlegelii fish, brine shrimp Artemia salina, and microalga Tetraselmis suecica, S3 had the lowest LC50 values of 60.2, 108, and 6.7 μg mL−1 and exhibited no observed effect concentration at 24.5, 41.6, and 3.1 μg mL−1 for these three tested marine organisms, respectively.


Antifouling Sargassum horneri Chromanols Mytilus edulis Ulva pertusa Navicula annexa 



This work was supported by the Soonchunhyang University Research Fund. The fish toxicity test was supported by the National Fisheries Research and Development Institute. Dr. Hyun-Jung Lim is thanked for help with the fish toxicity testing.


  1. Abdel-Lateff A, Elkhayat ES, Fouad MA, Okino T (2009) Aureobasidin, new antifouling metabolite from marine-derived fungus Aureobasidium sp. Nat Prod Commun 4:389–394PubMedGoogle Scholar
  2. Bhattarai HD, Ganti VS, Paudel B, Lee YK, Lee HK, Hong YK, Shin HW (2007) Isolation of antifouling compounds from the marine bacterium, Shewanella oneidensis SCH0402. World J Microb Biotechnol 23:243–249CrossRefGoogle Scholar
  3. Bianco EM, Teixeira VL, Pereira RC, De-Souza AM, Nucci P, Afonso IF, Rodrigues CR, Castro HC (2009) Brown seaweed defensive chemicals: a structure–activity relationship approach for the marine environment. Nat Prod Commun 4:173–178PubMedGoogle Scholar
  4. Blunt JW, Copp BR, Hu WP, Munro MHG, Northcote PT, Prinsep MR (2008) Marine natural products. Nat Prod Rep 25:35–94PubMedCrossRefGoogle Scholar
  5. Bruder M, Smith SJ, Blake AJ, Moody CJ (2009) Synthesis of (±)-likonide B (smenochromene D) using a regioselective Claisen rearrangement, separation of the enantiomers and stereochemical assignment. Org Biomol Chem 7:2127–2134PubMedCrossRefGoogle Scholar
  6. Cardozo KHM, Garatini T, Barros MP, Falcao VR, Tonon AP, Lopez NP et al (2007) Metabolites from algae with economical impact. Comp Biochem Physiol C 146:60–78Google Scholar
  7. Cho JY, Kwon EH, Choi JS, Hong SY, Shin HW, Hong YK (2001) Antifouling activity of seaweed extracts on the green alga Enteromorpha prolifera and the mussel Mytilus edulis. J Appl Phycol 13:117–115CrossRefGoogle Scholar
  8. Cho SH, Cho JY, Kang SE, Hong YK, Ahn DH (2008) Antioxidant activity of mojabanchromanol, a novel chromene, isolated from brown alga Sargassum siliquastrum. J Environ Biol 29:479–484PubMedGoogle Scholar
  9. Clare AS, Rittschof D, Gerhart DJ, Maki JS (1992) Molecular approaches to nontoxic antifouling. J Invert Reprod Dev 22:67–76CrossRefGoogle Scholar
  10. Culioli G, Ortalo-Mange A, Vallas R, Hellio C, Clare AS, Piovetti L (2008) Antifouling activity of meroditerpenoids from the marine brown alga Halidrys siliquosa. J Nat Prod 71:1121–1126PubMedCrossRefGoogle Scholar
  11. Davis TA, Volesky B, Vieira RHSF (2000) Sargassum seaweed as biosorbent for heavy metals. Water Res 34:4270–4278CrossRefGoogle Scholar
  12. de Nys R, Steinberg PD, Willemsen P, Dworjanyn SA, Gabelish CL, King RJ (1995) Broad spectrum effects of secondary metabolites from the red alga Delisea pulchra in antifouling assays. Biofouling 8:259–271CrossRefGoogle Scholar
  13. Decho AW (2000) Microbial biofilms in intertidal systems: an overview. Continental Shelf Res 20:1257–1273CrossRefGoogle Scholar
  14. Fernández-Alba AR, Hernando MD, Piedra L, Chisti Y (2002) Toxicity evaluation of single and mixed antifouling biocides measured with acute toxicity bioassays. Anal Chim Acta 456:303–312CrossRefGoogle Scholar
  15. Finney DJ (1971) Probit Analysis. Cambridge University Press, London, p 333Google Scholar
  16. Fourest E, Volesky B (1997) Alginate properties and heavy metal biosorption by marine algae. Appl Biochem Biotechnol 67:33–44CrossRefGoogle Scholar
  17. Fusetani N (2004) Biofouling and antifouling. Nat Prod Rep 21:94–104PubMedCrossRefGoogle Scholar
  18. Fusetani N (2011) Antifouling marine natural products. Nat Prod Rep 28:400–410PubMedCrossRefGoogle Scholar
  19. Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Can J Microbiol 8:229–239PubMedCrossRefGoogle Scholar
  20. Hall LW Jr, Gidding JM, Solomon KR, Balcomb R (1999) An ecological risk assessment for the use of Irgarol 1051 as an algaecide for antifouling paints. Crit Rev Toxicol 29:367–437PubMedGoogle Scholar
  21. Holan ZR, Volesky B (1994) Biosorption of lead and nickel by biomass of marine algae. Biotech Bioeng 43:1001–1009CrossRefGoogle Scholar
  22. Holan ZR, Volesky B, Prasetyo I (1993) Biosorption of Cd by biomass of marine algae. Biotech Bioeng 41:819–825CrossRefGoogle Scholar
  23. Holt JS (1993) Mechanisms and agronomic aspects of herbicide resistance. Ann Rev Plant Physiol Plant Mol Biol 44:203–229CrossRefGoogle Scholar
  24. Horie S, Tsutsumi S, Takada Y, Kimura J (2008) Antibacterial quinone metabolites from the brown alga, Sargassum sagamianum. Bull Chem Soc Japan 81:1125–1130CrossRefGoogle Scholar
  25. IMO (The International Maritime Organization) (2001) International convention on the control of harmful anti-fouling systems on ships.
  26. Ishitsuka M, Kusumi T, Nomura Y, Konno T, Kakisawa H (1979) New geranylgeranylbenzoquinone derivatives from Sargassum tortile. Chem Lett 8:1269–1272CrossRefGoogle Scholar
  27. Jang KH, Lee BH, Choi BW, Lee HS, Shin JH (2005) Chromenes from the brown alga Sargassum siliquastrum. J Nat Prod 68:716–723PubMedCrossRefGoogle Scholar
  28. Johnson AL, Bergman J, Sjogren M, Bohlin L (2004) Synthesis of barettin. Tetrahedron 60:961–965CrossRefGoogle Scholar
  29. Kim WS, Kim JW, Lee JH, Huh SH (2008) Effects of sodium cyanide (NaCN) on the endogenous rhythm of the oxygen consumption rate in the black rockfish Sebastes schlegeli. Ocean Sci J 43:107–113CrossRefGoogle Scholar
  30. Kuyucak N, Volesky B (1988) Biosorbents for recovery of metals from industrial solutions. Biotechnol Lett 10:137–142CrossRefGoogle Scholar
  31. Kwong TFN, Miao L, Li X, Qian PY (2006) Novel antifouling and antimicrobial compound from a marine-derived fungus Ampelomyces sp. Mar Biotechnol 8:634–640PubMedCrossRefGoogle Scholar
  32. Lamoree MH, Swart CP, van der Horst A, van Hattum B (2002) Determination of Diuron and the antifouling paint biocide Irgarol 1051 in Dutch marinas and coastal waters. J Chromatogr 970:183–190CrossRefGoogle Scholar
  33. Oh MY, Lee SB, Jin DH, Hong YK, Jin HJ (2010) Isolation of algicidal compounds from the red alga Corallina pilulifera against red tide microalgae. J Appl Phycol 22:453–458CrossRefGoogle Scholar
  34. Ortlepp S, Sjogren M, Dahlstrom M, Weber H, Ebel R, Edrada R, Thoms C, Schupp P, Bohlin L, Proksch P (2007) Antifouling activity of bromotyrosine-derived sponge metabolites and synthetic analogues. Mar Biotechnol 9:776–785PubMedCrossRefGoogle Scholar
  35. Ortlepp S, Pedpradap S, Dobretsov S, Proksch P (2008) Antifouling activity of sponge derived polybrominated diphenyl ethers and synthetic analogues. Biofouling 24:201–208PubMedCrossRefGoogle Scholar
  36. Pelegrin Y, Robledo D, Chan-Bacab MJ, Ortega-Morales BO (2008) Antileishmanial properties of tropical marine algae extracts. Fitoterapia 79:374–377CrossRefGoogle Scholar
  37. Plaza M, Cifuentes A, Ibanez E (2008) In the search of new functional food ingredients from algae. Trends Food Sci Technol 19:31–39CrossRefGoogle Scholar
  38. Plouguerné E, Ioannou E, Georgantea P, Vagias C, Roussis V, Hellio C, Kraffe E, Stiger-Pouvreau V (2010) Anti-microfouling activity of lipidic metabolites from the invasive brown alga Sargassum muticum (Yendo). Fensholt Mar Biotechnol 12:52–61CrossRefGoogle Scholar
  39. Qi SH, Miao L, Gao CH, Xu Y, Zhang S, Qian PY (2010) New steroids and a new alkaloid from the gorgonian Isis minorbrachyblasta: structures, cytotoxicity, and antilarval activity. Helv Chim Acta 93:511–516CrossRefGoogle Scholar
  40. Qiu Y, Deng ZW, Xu M, Li Q, Lin WH (2008) New a-nor steroids and their antifouling activity from the Chinese marine sponge Acanthella cavernosa. Steroids 73:1500–1504PubMedCrossRefGoogle Scholar
  41. Railkin AI (2004) Marine biofouling: colonization processes and defenses. CRC, Boca RatonGoogle Scholar
  42. Ranke J, Jastorff B (2000) Multidimensional risk analysis of antifouling biocides. Environ Sci Poll Res 7:109–110CrossRefGoogle Scholar
  43. Rao JV, Kavitha P, Jakka NM, Sridhar V, Usman PK (2007) Toxicity of organophosphates on morphology and locomotor behavior in brine shrimp, Artemia salina. Arch Environ Contam Toxicol 53:227–232CrossRefGoogle Scholar
  44. Segawa M, Shirahama H (1987) New plastoquinones from the brown alga Sargassum sagamianum var. yezoense. Chem Lett 1:1365–1366CrossRefGoogle Scholar
  45. Seo YW, Park KE, Kim YA, Lee HJ, Yoo JS, Ahn JW, Lee BJ (2006) Isolation of tetraprenyltoluquinols from the brown alga Sargassum thunbergii. Chem Pharm Bull 54:1730–1733PubMedCrossRefGoogle Scholar
  46. Seo YW, Park KE, Nam TJ (2007) Isolation of a new chromene from the brown alga Sargassum thunbergii. Bull Korean Chem Soc 28:1831–1833CrossRefGoogle Scholar
  47. Shin HW (1998) Antifouling action of zosteric acid and copper on spores of Ulva fasciata Delile. Algae 13:271–274Google Scholar
  48. Silva-Aciares F, Riquelme C (2008) Inhibition of attachment of some fouling diatoms and settlement of Ulva lactuca zoospores by film-forming bacterium and their extracellular products isolated from biofouled substrata in Northern Chile. Elect J Biotech 11:1–11Google Scholar
  49. Tang H, Yi Y, Yao X, Zhang S, Zou Z, Li L (2002a) Glycerides from marine brown algae Sargassum carpophyllum. Chin J Mar Drugs 21:5–9Google Scholar
  50. Tang H, Yi Y, Yao X, Zhou D, Lu T, Jiang Y (2002b) Studies on bioactive steroid constituents from Sargassum carpophyllum. Chin Pham J 37:262–265Google Scholar
  51. Thomas KV, McHugh M, Waldock M (2002) Antifouling paint booster biocides in UK coastal waters: input, occurrence and environmental fate. Sci Total Environ 293:117–127PubMedCrossRefGoogle Scholar
  52. Tsoukatou M, Marechal JP, Hellio C, Novakovic I, Tufegdzic S, Sladic D, Gasic MJ, Clare AS, Vagias C, Roussis V (2007) Evaluation of the activity of the sponge metabolites avarol and avarone and their synthetic derivatives against fouling micro- and macroorganisms. Molecules 12:1022–1034PubMedCrossRefGoogle Scholar
  53. US-EPA (United States Environmental Protection Agency) (2002) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms (EPA-821-R-02-012). 5th edn. Washington, DCGoogle Scholar
  54. Vanhaaecke P, Persoone G, Claus C, Sorgeloos P (1981) Proposal for a short-term toxicity test with Artemia nauplii. Ecotoxicol Environ Saf 5:382–387CrossRefGoogle Scholar
  55. Wieczorek SK, Todd CD (1998) Inhibition and facilitation of the settlement of epifaunal marine invertebrate larvae by microbial biofilm cues. Biofouling 12:81–93CrossRefGoogle Scholar
  56. Xu Y, Li HL, Li XC, Xiao X, Qian PY (2009) Inhibitory effects of a branched-chain fatty acid on larval settlement of the polychaete Hydroides elegans. Mar Biotech 11:495–504CrossRefGoogle Scholar
  57. Yebra DM, Kiil S, Dam-Johansen K (2004) Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat 50:75–104CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Marine BiotechnologySoonChunHyang UniversityAsanSouth Korea

Personalised recommendations