Advertisement

Journal of Applied Phycology

, Volume 25, Issue 1, pp 215–224 | Cite as

Differential ecological responses to environmental stress in the life history phases of the isomorphic red alga Gracilaria chilensis (Rhodophyta)

  • Marie-Laure Guillemin
  • Roger D. Sepúlveda
  • Juan A. Correa
  • Christophe Destombe
Article

Abstract

In order to better understand the alternation of generations that characterizes haploid–diploid life cycles, we assessed the existence of ecological differences between the two phases (haploid gametophyte and diploid tetrasporophyte) in Gracilaria chilensis, a rhodophyte with a typical Polysiphonia-type life cycle. We investigated the effect of light intensity and salinity on viability and growth of both phases at different ontogenetic stages: juveniles and adults. In our study, the survival of juvenile gametophytes (n) was higher than the survival of juvenile tetrasporophytes (2n) despite culture conditions; however, low salinity had greater effect on carpospores (2n) than on tetraspores (n). On the other hand, a complex interaction between salinity and light intensity within each life history phase generated observed differences between juvenile growth rates. Low light was shown to trigger early onset of alteration of the holdfast growing pattern. In addition, adult tetrasporophytes showed, despite the conditions, a faster vegetative growth than female and male gametophytes. These differences between phases could have led to the complete dominance of tetrasporophyte fragments of fronds observed in G. chilensis farms. We hypothesize that Chilean fishers could have unknowingly selected for tetrasporophyte thalli during domestication of the species, thus enhancing the natural trend of tetrasporophytes dominance already present in estuarine natural populations of free-floating plants.

Keywords

Life cycle evolution Gametophyte Sporophyte Ecological differences Asexual reproduction Light Salinity 

Notes

Acknowledgments

This research was funded by Fondo Nacional de Desarrollo Científico y Tecnológico, Gobierno de Chile (FONDECYT #1090360) awarded to M-L. Guillemin. This study also constitutes a contribution from the Associated International Laboratory between France and Chile “Dispersal and Adaptation in Marine Species” (LIA DIAMS). We thank V. Flores, F. Rubio and N. Lavado for their help during the field sampling and the laboratory experiments and D. Roze and M. Valero for their helpful comments. We are also grateful to two anonymous reviewers for improving the early version of the manuscript.

References

  1. Akatsuka I (1986) Japanese Gelidiales (Rhodophyta), especially Gelidium. Oceanogr Mar Biol Annu Rev 24:171–263Google Scholar
  2. Bird CJ, McLachlan J (1986) The effect of salinity on distribution of species of Gracilaria Grev. (Rhodophyta, Gigartinales): an experimental assessment. Bot Mar 29:231–238CrossRefGoogle Scholar
  3. Bird CJ, McLachlan J, Oliveira EC (1986) Gracilaria chilensis sp. nov. (Rhodophyta, Gigartinales), from Pacific South America. Can J Bot 64:2928–2934CrossRefGoogle Scholar
  4. Buschmann AH, Correa JA, Westernmeier E, Hernandez-Gonzalez MDC, Normabuena R (2001) Red algal farming in Chile: a review. Aquaculture 194:203–220CrossRefGoogle Scholar
  5. Carmona R, Santos R (2006) Is there an ecophysiological explanation for the gametophyte–tetrasporophyte ratio in Gelidium sesquipedale (Rhodophyta)? J Phycol 42:259–269CrossRefGoogle Scholar
  6. Choi HG, Kim YS, Kim JH, Lee SJ, Park EJ, Ryu J, Nam KW (2006) Effects of temperature and salinity on the growth of Gracilaria verrucosa and G. chorda, with the potential for mariculture in Korea. J Appl Phycol 18:269–277CrossRefGoogle Scholar
  7. Coelho S, Peters AF, Charrier B, Roze D, Destombe C, Valero M, Cock JM (2007) Complex life cycles of multicellular eukaryotes: new approaches based on the use of model organisms. Gene 406:152–170PubMedCrossRefGoogle Scholar
  8. Correa JA, McLachlan JL (1991) Endophytic algae of Chondrus crispus (Rhodophyta). III. Host specificity. J Phycol 27:448–459CrossRefGoogle Scholar
  9. Cronin G, Hay ME (1996) Chemical defenses, protein content, and susceptibility to herbivory of diploid vs. haploid stages of the isomorphic brown alga Dictyota ciliolata (Phaeophyta). Bot Mar 39:395–399CrossRefGoogle Scholar
  10. Destombe C, Valero M, Vernet P, Couvet D (1989) What controls haploid–diploid ratio in the red alga, Gracilaria verrucosa? J Evol Biol 2:317–338CrossRefGoogle Scholar
  11. Destombe C, Godin J, Lefebvre C, Dehorter O, Vernet P (1992) Differences in dispersal abilities of haploid and diploid spores of Gracilaria verrucosa (Gracilariales, Rhodophyta). Bot Mar 35:93–98CrossRefGoogle Scholar
  12. Destombe C, Godin J, Nocher M, Richerd S, Valero M (1993) Differences in response between haploid and diploid isomorphic phases of Gracilaria verrucosa (Rhodophyta: Gigartinales) exposed to artificial environmental conditions. Hydrobiologia 260/261:131–137CrossRefGoogle Scholar
  13. Edding M, León C, Rattcliff A (1987) Growth of Gracilaria sp. in the laboratory. Hydrobiologia 151/152:375–379CrossRefGoogle Scholar
  14. Fierst J, ter Horst C, Kubler JE, Dudgeon S (2005) Fertilization success can drive patterns of phase dominance in complex life histories. J Phycol 41:238–249CrossRefGoogle Scholar
  15. Fredersdorf J, Müller R, Becker S, Wiencke C, Bischof K (2009) Interactive effects of radiation, temperature and salinity on different life history stages of the Arctic kelp Alaria esculenta (Phaeophyceae). Oecologia 160:483–492PubMedCrossRefGoogle Scholar
  16. Garza-Sánchez F, Zertuche-González JA, Chapman DJ (2000) Effect of temperature and irradiance on the release, attachment, and survival of spores of Gracilaria pacifica Abbot (Rhodophyta). Bot Mar 43:205–212CrossRefGoogle Scholar
  17. Gómez I, Figueroa FL, Huovinen P, Ulloa N, Morales V (2005) Photosynthesis of the red alga Gracilaria chilensis under natural solar radiation in an estuary in southern Chile. Aquaculture 244:369–382CrossRefGoogle Scholar
  18. Guillemin ML, Faugeron S, Destombe C, Viard F, Correa JA, Valero M (2008) Genetic variation in wild and cultivated populations of the haploid–diploid red alga Gracilaria chilensis: how farming practices favour asexual reproduction and heterozygosity. Evolution 62:1500–1519PubMedCrossRefGoogle Scholar
  19. Guimaraes M, Plastino EM, Oliveira EC (1999) Life history, reproduction and growth of Gracilaria domingensis (Gracilariales, Rhodophyta) from Brazil. Bot Mar 42:481–486CrossRefGoogle Scholar
  20. Hannach G, Santelices B (1985) Ecological differences between the isomorphic reproductive phases of two species of Iridaea (Rhodophyta: Gigartinales). Mar Ecol Prog Ser 22:291–303CrossRefGoogle Scholar
  21. Hoyle MD (1978) Reproductive phenology and growth rates in two species of Gracilaria from Hawaii. J Exp Mar Biol Ecol 35:273–283CrossRefGoogle Scholar
  22. Hughes JS, Otto SP (1999) Ecology and the evolution of biphasic life cycles. Am Nat 154:306–320PubMedCrossRefGoogle Scholar
  23. Hunt R (1982) Plant growth curves. Edward Arnold, LondonGoogle Scholar
  24. Juanes JA, Puente A (1993) Differential re-attachment capacity of isomorphic life history phases of Gelidium sesquipedale. Hydrobiologia 260/261:139–144CrossRefGoogle Scholar
  25. Kain JM, Destombe C (1995) A review of the life history, reproduction and phenology of Gracilaria. J Appl Phycol 7:269–281CrossRefGoogle Scholar
  26. Kraan S, Barrington KA (2005) Commercial farming of Asparagopsis armata (Bonnemaisoniceae, Rhodophyta) in Ireland, maintenance of an introduced species? J Appl Phycol 17:103–110CrossRefGoogle Scholar
  27. Lubchenco J, Cubit J (1980) Heteromorphic life histories of certain marine algae as adaptations to variations in herbivory. Ecology 61:676–687CrossRefGoogle Scholar
  28. Mable BK, Otto SP (1998) The evolution of life cycles with haploid and diploid phases. Bioessays 20:453–462CrossRefGoogle Scholar
  29. Martín LA, Zaixso ALB, Leonardi PI (2010) Biomass variation and reproductive phenology of Gracilaria gracilis in a Patagonian natural bed (Chubut, Argentina). J Appl Phycol 23:643–654CrossRefGoogle Scholar
  30. Maynard-Smith J (1978) The evolution of sex. Cambridge University Press, CambridgeGoogle Scholar
  31. Patwary MU, van der Meer JP (1984) Growth experiments on autopolyploids of Gracilaria tikvahiae (Rhodophyceae). Phycologia 23:21–27CrossRefGoogle Scholar
  32. Pizarro A, Santelices B (1993) Environmental variation and large scale Gracilaria production. Hydrobiologia 260/261:357–363CrossRefGoogle Scholar
  33. Prieto I, Westermeier R, Muller D (1991) Variation of phenophases of Gracilaria chilensis Bird, McLaughlin and Oliveira (Rhodophyta, Gigartinales) in laboratory and field culture conditions: presence of mixed phases. Rev Chil Hist Nat 64:343–352Google Scholar
  34. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  35. Raikar SV, Iima M, Fujita Y (2001) Effect of temperature, salinity and light intensity on the growth of Gracilaria spp. (Gracilariales, Rhodophyta) from Japan, Malaysia and India. Indian J Mar Sci 30:98–104Google Scholar
  36. Raper JR, Flexer AS (1970) The road to diploidy with emphasis on a detour. Symp Soc Gen Microbiol 20:401–432Google Scholar
  37. Santelices B, Varela D (1995) Regenerative capacity of Gracilaria fragments: effects of size, reproductive state and position along the axis. J Appl Phycol 7:501–506CrossRefGoogle Scholar
  38. Santelices B, Vásquez J, Ohme U, Fonck E (1984) Managing wild crops of Gracilaria in Central Chile. Hydrobiologia 116:77–89CrossRefGoogle Scholar
  39. Santelices B, Westermeier R, Bobadilla M (1993) Effects of stock loading and planting distance on the growth and production of Gracilaria chilensis in rope culture. J Appl Phycol 5:517–524CrossRefGoogle Scholar
  40. Thomsen MS, McGlathery KJ, Schartschild A, Silliman BR (2009) Distribution and ecological role of the non-native macroalga Gracilaria vermiculophylla in Virginia salt marshes. Biol Invasions 11:2303–2316CrossRefGoogle Scholar
  41. Thornber CS (2006) Functional properties of the isomorphic biphasic algal life cycle. Integr Comp Biol 46:605–614PubMedCrossRefGoogle Scholar
  42. Thornber C, Stachowicz JJ, Gaines S (2006) Tissue type matters: selective herbivory on different life history stages of an isomorphic alga. Ecology 87:2255–2263PubMedCrossRefGoogle Scholar
  43. Weinberger F, Buchholz B, Karez R, Wahl M (2008) The invasive red alga Gracilaria vermiculophylla in the Baltic Sea: adaptation to brackish water may compensate for light limitation. Aquat Biol 3:251–264CrossRefGoogle Scholar
  44. West JA, Zuccarello GC (1999) Biogeography of sexual and asexual reproduction in Bostrychia moritziana (Rhodomelaceae, Rhodophyta). Phycol Res 47:115–123CrossRefGoogle Scholar
  45. Westermeier R, Rivera PJ, Gómez I (1991) Cultivo de Gracilaria chilensis Bird, McLachlan y Oliveira, en la zona intermareal y submareal del estuario Cariquilda, Maullín, Chile. Rev Chil Hist Nat 64:307–321Google Scholar
  46. Williams SL, Smith JE (2007) A global review of the distribution, taxonomy, and impacts of introduced seaweeds. Annu Rev Ecol Evol Syst 38:327–359CrossRefGoogle Scholar
  47. Zhang X, van der Meer JP (1987) A study of heterosis in diploid gametophytes of the marine red algae Gracilaria tikvahiae. Bot Mar 30:309–314CrossRefGoogle Scholar
  48. Zuccarello GC, Yeates PH, Wright JT, Bartlett J (2001) Population structure and physiological differentiation of haplotypes of Caloglossa leprieurii (Rhodophyta) in a mangrove intertidal zone. J Phycol 37:235–244CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Marie-Laure Guillemin
    • 1
  • Roger D. Sepúlveda
    • 1
  • Juan A. Correa
    • 2
  • Christophe Destombe
    • 3
  1. 1.Instituto de Ciencias Ambientales y Evolutivas, Facultad de CienciasUniversidad Austral de ChileValdiviaChile
  2. 2.Center for Advanced Studies in Ecology and Biodiversity, Dpto. de Ecología, Facultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
  3. 3.Université Pierre et Marie Curie and CNRS-UMR 7144, Adaptation & Diversité en Milieu MarinStation Biologique, Equipe “BEDIM”Roscoff CedexFrance

Personalised recommendations