Journal of Applied Phycology

, Volume 24, Issue 6, pp 1643–1653 | Cite as

The Gracilariaceae Germplasm Bank of the University of São Paulo, Brazil—a DNA barcoding approach

  • Emmanuelle S. Costa
  • Estela M. Plastino
  • Rosario Petti
  • Eurico C. Oliveira
  • Mariana C. Oliveira


The University of São Paulo Gracilariaceae Germplasm Bank has 50 strains collected mostly in Brazil, but also elsewhere in the world. This bank has been used as a source of material for research developed locally and abroad. With over 200 species, some of which have high economic value, the family Gracilariaceae has been extensively studied. Nonetheless, taxonomic problems still persist by the existence of cryptic species, phenotypic plasticity, and broad geographic distribution. In the case of algae kept in culture for long periods of time, the identification is even more problematic as a consequence of considerable morphological modification. Thus, the use of molecular markers has been shown to be an efficient tool to elucidate taxonomic issues in the group. In this work, we sequenced the 5′-end of the cox1 gene for 41 strains and the universal plastid amplicon (UPA) plastid region for 45 strains, covering all 50 strains in the bank. In addition, the rbcL for representatives of the cox1/UPA clusters was sequenced for 14 strains. The original species identification based on morphology was compared with the molecular data obtained in this work, resulting in the identification of 13 different species. Our analyses indicate that cox1 and UPA are suitable markers for the delineation of species of Gracilariales in the germplasm bank. The addition of DNA barcode tags to the samples in the Gracilariaceae germplasm bank and the molecular identification of the species will make this bank even more useful for future research as the species can be easily traced and confirmed.


coxDNA barcoding Germplasm bank Gracilariales rbcUPA 



This research had been supported by the State of São Paulo Research Foundation (FAPESP, 2007/51270-7) and the Brazilian National Council for Scientific and Technological Development (CNPq; BrBOL 564945/2010-2). E. Costa acknowledges a scholarship from CAPES. We thank Carolina de Oliveira Franco for technical support.


  1. Barufi JB, Oliveira EC, Plastino EM, Oliveira MC (2010) Life history, morphological variability and growth rates of the life phases of Gracilaria tenuistipitata (Rhodophyta: Gracilariales) in vitro. Sci Mar 74:297–303CrossRefGoogle Scholar
  2. Bellorin AM, Oliveira MC, Oliveira EC (2002) Phylogeny and systematics of the marine algal family Gracilariaceae (Gracilariales, Rhodophyta) based on SSU DNAr and ITS sequences of Atlantic and Pacific species. J Phycol 38:551–563Google Scholar
  3. Bellorin AM, Oliveira MC, Oliveira EC (2004) Gracilaria vermiculophylla: a western Pacific species of Gracilariaceae (Rhodophyta) first recorded from the eastern Pacific. Phycol Res 52:69–79CrossRefGoogle Scholar
  4. Bellorin AM, Buriyo A, Sohrabipour J, Oliveira MC, Oliveira EC (2008) Gracilariopsis mclachlanii sp. Nov. and Gracilariopsis persica sp. Nov. of the Gracilariaceae (Gracilariales, Rhodophyceae) from the Indian Ocean. J Phycol 44:1022–1032CrossRefGoogle Scholar
  5. Bhattacharya D, Elwood HJ, Goff LJ, Sogin ML (1990) Phylogeny of Gracilaria lemaneiformis (Rhodophyta) based on sequence analysis of its small ribosomal RNA coding region. J Phycol 26:181–186CrossRefGoogle Scholar
  6. Bird CJ, Oliveira EC (1986) Gracilaria tenuifrons sp. Nov. (Gigartinales, Rhodophyta) a specie from the tropical western Atlantic with superficial spermatangia. Phycologia 25:313–320CrossRefGoogle Scholar
  7. Bouzon ZL, Miguens F, Oliveira EC (2000) Male gametogenesis in the red algae Gracilaria and Gracilariopsis (Rhodophyta, Gracilariales). Cryptogam Algol 21:33–47CrossRefGoogle Scholar
  8. Bouzon ZL, Schmidt EC, Almeida AC, Yokoya NS, Oliveira MC, Chow FF (2011) Cytochemical characterization and ultrastructural organization in calluses of the agarophyte Gracilariopsis tenuifrons (Gracilariales, Rhodophyta). Micron 42:80–86PubMedCrossRefGoogle Scholar
  9. Chow FF, Oliveira MC (2008) Rapid and slow modulation of nitrate reductase activity in the red macroalga Gracilaria chilensis (Gracilariales, Rhodophyta): influence of different nitrogen sources. J Appl Phycol 20:325–332CrossRefGoogle Scholar
  10. Chow FF, Oliveira MC, Pedérsen M (2004) In vitro assay and light regulation of nitrate reductase in the red alga Gracilaria chilensis. J Plant Physiol 161:769–776PubMedCrossRefGoogle Scholar
  11. Chow FF, Capociama V, Faria R, Oliveira MC (2007) Characterization of nitrate reductase activity in vitro in the red seaweed Gracilaria caudata J. Agardh (Rhodophyta, Gracilariales). Rev Bras Bot 30:123–129CrossRefGoogle Scholar
  12. Collén J, Pinto E, Pedersén M, Colepicolo P (2003) Induction of oxidative stress in the red macroalga Gracilaria tenuistipitata by pollutant metals. Arch Environ Contam Toxicol 45:337–342PubMedCrossRefGoogle Scholar
  13. Costa VL, Plastino EM (2001) Histórico de vida de espécimes selvagens e variantes cromáticas de Gracilaria sp. (Gracilariales, Rhodophyta) in laboratory. Rev Bras Bot 24(suppl):491–500Google Scholar
  14. Costa VL, Plastino EM (2011) Color inheritance and pigment characterization of red (wild-type), greenish-brown, and green strains of Gracilaria birdiae (Gracilariales, Rhodophyta). J Appl Phycol 23:599–605CrossRefGoogle Scholar
  15. Falcão VDR, Tonon AP, Oliveira MC, Colepicolo P (2008) RNA Isolation method for polysaccharide rich algae: agar producing Gracilaria tenuistipitata (Rhodophyta). J Appl Phycol 20:9–12CrossRefGoogle Scholar
  16. Falcão VDR, Oliveira MC, Colepicolo P (2010) Molecular characterization of nitrate reductase gene and its expression in the marine red alga Gracilaria tenuistipitata (Rhodophyta). J Appl Phycol 22:613–622CrossRefGoogle Scholar
  17. Ferreira LB, Barufi JB, Plastino EM (2006) Growth of red and green strains of the agarophyte tropical Gracilaria cornea (Gracilariales, Rhodophyta) in laboratory. Rev Bras Bot 29:185–190CrossRefGoogle Scholar
  18. Fredericq S, Hommersand MH (1989) Proposal of the Gracilariales ord. nov. (Rhodophyta) based on an analysis of the reproductive development of Gracilaria verrucosa. J Phycol 25:213–227CrossRefGoogle Scholar
  19. Freshwater DW, Fredericq S, Butler BS, Hommersand MH, Chase MW (1994) A gene phylogeny of the red algae (Rhodophyta) based on plastid rbcL. Proc Natl Acad Sci USA 91:7281–7285PubMedCrossRefGoogle Scholar
  20. Goff LJ, Moon DA, Coleman AW (1994) Molecular delineation of species and species relationship in the red algal agarophytes Gracilariopsis and Gracilaria (Gracilariales). J Phycol 30:521–537CrossRefGoogle Scholar
  21. Guimarães M, Plastino EM (1999) Plastid organization of color variants of the red macroalga Gracilaria domingensis (Gracilariales). Acta Microsc 8(Sup. C):795–796Google Scholar
  22. Guimarães M, Plastino EM, Oliveira EC (1999) Life-history, reproduction, and growth of Gracilaria domingensis (Gracilariales, Rhodophyta) from Brazil. Bot Mar 42:481–486CrossRefGoogle Scholar
  23. Guimarães M, Plastino EM, Destombe C (2003) Green mutant frequency in natural populations of Gracilaria domingensis (Gracilariales, Rhodophyta) from Brazil. Eur J Phycol 38:165–169CrossRefGoogle Scholar
  24. Guimarães M, Viana AG, Duarte MER, Ascêncio SD, Plastino EM, Noseda MD (2007) Low-molecular-mass carbohydrates and soluble polysaccharides of green and red morphs of Gracilaria domingensis (Gracilariales, Rhodophyta). Bot Mar 50:314–317CrossRefGoogle Scholar
  25. Guiry MD, Guiry GM (2010) Algaebase. World-wide electronic publication, National University of Ireland, Galway. Accessed 24 Aug 2011
  26. Gurgel CFD, Fredericq S, Norris JN (1999) Characterization and biogeographic affinities of the red algal genus, Gracilaria (Gracilariales), in the Gulf of México. J Phycol 35(suppl):13Google Scholar
  27. Gurgel CFD, Liao LM, Fredericq S, Hommersand MH (2003) Systematyics of Gracilariopsis (Gracilariales, Rhodophyta) based on rbcL sequence analyses and mophological evidence. J Phycol 39:154–171CrossRefGoogle Scholar
  28. Gurgel CFD, Fredericq S, Norris JN (2004) Gracilaria apiculata and G. flabelliformis (Gracilariaceae, Rhodophyta): restoring old names for common tropical western Atlantic species, including the recognition of three new subspecies, and a replacement name for “G. lacinulata”. Cryptogam Algol 25:367–396Google Scholar
  29. Hagopian JC, Nyvall P, Oliveira MC (2002) Purification of plastid DNA from an enriched rhodoplast fraction of the red alga Gracilaria tenuistipitata. Plant Mol Biol Rep 20:406Google Scholar
  30. Hagopian JC, Reis M, Kitajima JP, Bhattacharya D, Oliveira MC (2004) Comparative analysis of the complete plastid genome sequence of the red alga Gracilaria tenuistipitata var. liui provides insights on the evolution of rhodoplasts and their relationship to other plastids. J Mol Evol 59:464–477PubMedCrossRefGoogle Scholar
  31. Hall TA (1999) BioEdit: a user-friendly biological alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  32. Hebert PDN, Cywinska A, Ball SL, de Waard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B 270:313–321CrossRefGoogle Scholar
  33. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  34. Lopes PF, Oliveira MC, Colepicolo P (1997) Diurnal fluctuation of nitrate reductase activity in the marine red alga Gracilaria tenuistipitata (Rhodophyta). J Phycol 33:225–231CrossRefGoogle Scholar
  35. Lopes PF, Oliveira MC, Colepicolo P (2002) Characterization and daily variation of nitrate reductase in Gracilaria tenuistipitata (Rhodophyta). Biochem Biophys Res Commun 295:50–54PubMedCrossRefGoogle Scholar
  36. Lourenço SO, Vieira AAH (2004) Culture collections of microalgae in Brazil: progress and constraints. Nova Hedwigia 79:149–173CrossRefGoogle Scholar
  37. Machiavello J, Saito R, Garófalo G, Oliveira EC (1999) A comparative analysis of agarans from commercial species of Gracilaria (Gracilariales, Rhodophyta) grown in vitro. Hydrobiologia 399:105–108CrossRefGoogle Scholar
  38. Milstein D, Medeiros AS, Oliveira EC, Oliveira MC (2011) Will a DNA barcoding approach be useful to identify Porphyra species (Bangiales, Rhodophyta)? A case study with Brazilian taxa. J Appl Phycol. doi: 10.1007/s10811-011-9702-3
  39. Nyvall P, Collén J, Reis MS, Pedersén M, Setubal JC, Varani AM, Colepicolo P, Oliveira MC (2011) Analysis of expressed sequence tags from the agarophyte Gracilaria tenuistipitata (Rhodophyta). J Appl Phycol. doi: 10.1007/s10811-011-9681-4
  40. Oliveira EC (1984) Taxonomic criteria in the genus Gracilaria Greville (Rhodophyta): an experience with the Western Atlantic species. Hydrobiologia 116/117:55–58CrossRefGoogle Scholar
  41. Oliveira EC, Plastino EM (1984) The life-history of Gracilaria (Rhodophyta) from Brazil. J Phycol 32:203–208Google Scholar
  42. Oliveira EC, Plastino EM (1994) Gracilariaceae. In: Akatsuka I (ed) Biology of economic algae. SSB Academic Publishing, The Hague, pp 185–226Google Scholar
  43. Oliveira EC, Alveal K, Anderson RJ (2000) Mariculture of the agar-producing gracilarioid red algae. J Phycol 8:345–377Google Scholar
  44. Plastino EM, Costa VL (1999) Ultrastructure of vegetative branches of the red macroalga Gracilaria sp. (Gracilariales). Acta Microsc 8(suppl):793–794Google Scholar
  45. Plastino EM, Costa VL (2001) Anomalous plastids in a light green strain of the red macroalga Gracilaria sp. (Gracilariales). Acta Microsc 3(Sup. C):315–316Google Scholar
  46. Plastino EM, Oliveira EC (1988) Sterelity barriers among species of Gracilaria (Rhodophyta, Gigartinales) from the São Paulo littoral, Brazil. Brit Phycol J 23:267–271CrossRefGoogle Scholar
  47. Plastino EM, Oliveira EC (1990) Crossing experiments as an aid to the taxonomic recognition of the agarophyte Gracilaria. In: Oliveira EC, Kautsky N (eds) Cultivation of seaweeds in Latin America. University of São Paulo, São Paulo, pp 127–133Google Scholar
  48. Plastino EM, Oliveira EC (1996) Approaches to the identification of terete Brazilian Gracilariaceae. Hydrobiologia 326/327:145–148CrossRefGoogle Scholar
  49. Plastino EM, Oliveira EC (1997) Gracilaria caudata J. Agardh (Gracilariales, Rhodophyta)—restoring an old name from a common Western Atlantic alga. Phycologia 36:225–232CrossRefGoogle Scholar
  50. Plastino EM, Oliveira EC (2000) Gracilaria birdiae (Gracilariales, Rhodophyta) a new specie from the tropical South American Atlantic with terete frond and deep spermatangial conceptacles. Phycologia 41:389–396CrossRefGoogle Scholar
  51. Plastino EM, Paula EJ, Oliveira EC (1995) Técnicas de hibridación en macroalgas marinas. In: Alveal K, Ferrario ME, Sar E (eds) Manual de Métodos Ficológicos. Universidad de Concepción, Concepción, pp 479–487Google Scholar
  52. Plastino EM, Ursi S, Heimbecker AMC (1998) Efeito da temperatura e salinidade no crescimento de Gracilariopsis tenuifrons (Gracilariales, Rhodophyta). In: Paula EJ, Cordeiro-Marino M, Pupo Santos D, Plastino EM, Fujii M, Yokoya N (eds) IV Congresso Latino Americano de Ficologia, II Reunião Ibero-Americana de Ficologia e VII Reunião Brasileira de Ficologia. Sociedade Brasileira de Ficologia, São Paulo, pp 359–369Google Scholar
  53. Plastino EM, Guimarães M, Matioli SR, Oliveira EC (1999) Codominant inheritance of polymorphic color variants of Gracilaria domingensis (Gracilariales, Rhodophyta). Genet Mol Biol 22:105–108CrossRefGoogle Scholar
  54. Plastino EM, Ursi S, Fujii MT (2004) Color inheritance, pigment characterization, and growth of a rare light green strain of Gracilaria birdiae (Gracilariales, Rhodophyta). Phycol Res 52:45–52CrossRefGoogle Scholar
  55. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  56. Ramlov F, Plastino EM, Yokoya NS (2009) Efeitos do ágar no crescimento de explantes e na formação de calos em morfos pigmentares de Gracilaria domingensis (Kutzing) Sonder ex Dickie (Gracilariales, Rhodophyta). Rev Bras Bot 32:605–614CrossRefGoogle Scholar
  57. Robba L, Russell SJ, Barker GL, Brodie J (2006) Assessing the use of the mitochondrial cox1 marker for use in DNA barcoding of red algae (Rhodophyta). Am J Bot 93:1101–1108PubMedCrossRefGoogle Scholar
  58. Rossa MM, Oliveira MC, Okamoto OK, Lopes PF, Colepicolo P (2002) The effect of visible light effect on superoxide dismutase (SOD) activity in the red alga Gracilariopsis tenuifrons (Gracilariales, Rhodophyta). J Appl Phycol 14:151–157CrossRefGoogle Scholar
  59. Saunders GW (2005) Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Phil Trans R Soc 360:1879–1888CrossRefGoogle Scholar
  60. Saunders GW (2009) Routine DNA barcoding of Canadian Gracilariales (Rhodophyta) reveals the invasive species Gracilaria vermiculophylla in British Columbia. Mol Ecol Resour 9:140–150PubMedCrossRefGoogle Scholar
  61. Savolainen V, Cowan RS, Vogler AP, Roderick GK, Lane R (2005) Taxonomy, DNA, and the barcode of life. Phil Trans R Soc 360:1805–1811CrossRefGoogle Scholar
  62. Sherwood AR, Presting GG (2007) Universal primers amplify a 23S rDNA plastid marker in eukaryotic algae and cyanobacteria. J Phycol 43:605–608CrossRefGoogle Scholar
  63. Sherwood AR, Kurihara A, Conklin KY, Sauvage T, Presting GG (2010) The Hawaiian Rhodophyta Biodiversity Survey (2006–2010): a summary of principal findings. Plant Biol 10:258Google Scholar
  64. Skriptsova AV, Nabivailo YV (2009) Comparison of three gracilarioids: growth rate, agar content and quality. J Appl Phycol 21:443–450CrossRefGoogle Scholar
  65. Swofford DL (2002) PAUP* phylogenetic analysis using parsimony (* and other methods), version 4. Sinauer, SunderlandGoogle Scholar
  66. Ursi S, Plastino EM (2001) Crescimento in vitro de linhagens de coloração vermelha e verde clara de Gracilaria sp. (Gracilariales, Rhodophyta) em dois meios de cultura: análise de diferentes estádios reprodutivos. Rev Bras Bot 24:587–594CrossRefGoogle Scholar
  67. Ursi S, Pedérsen M, Plastino EM, Snoeijs P (2003) Intraspecific variation of photosynthesis, respiration and photoprotective carotenois in Gracilaria birdiae (Gracilariales: Rhodophyta). Mar Biol 142:997–1007Google Scholar
  68. Ursi S, Guimarães M, Plastino EM (2008) Deleterious effect of TRIS buffer on growth rates and pigment contents of Gracilaria birdiae Plastino & E.C. Oliveira (Gracilariales, Rhodophyta). Acta Bot Bras 22:891–896CrossRefGoogle Scholar
  69. Yang EC, Kim MS, Geraldino PJL, Sahoo D, Shin J, Boo SM (2007) Mitochondril cox1 and plastid rbcL genes of Gracilaria vermiculophylla (Gracilariaceae, Rhodophyta). J Appl Phycol 20:161–168CrossRefGoogle Scholar
  70. Yokoya NS (2000) Apical callus formation and plant regeneration controlled by plant growth regulators on axenic culture of the red alga Gracilariopsis tenuifrons (Gracilariales, Rhodophyta). Phycol Res 48:133–142CrossRefGoogle Scholar
  71. Yokoya NS, Oliveira EC (1992a) Effects of salinity on the growth rate, morphology and water content of some Brazilian red algae of economic importance. Cienc Mar 18:49–64Google Scholar
  72. Yokoya NS, Oliveira EC (1992b) Geographic distribution and growth responses to temperature variation of some South American red algae of economic importance. J Appl Phycol 4:339–345CrossRefGoogle Scholar
  73. Yokoya NS, Oliveira EC (1993) Effects of temperature and salinity on spore germination and sporeling development of South American agarophytes. Phycol Res 41:283–293Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Emmanuelle S. Costa
    • 1
  • Estela M. Plastino
    • 1
  • Rosario Petti
    • 1
  • Eurico C. Oliveira
    • 1
    • 2
  • Mariana C. Oliveira
    • 1
  1. 1.Departamento de Botânica, Instituto de BiociênciasUniversidade de São PauloSão PauloBrazil
  2. 2.Departamento de Botânica, Centro de Ciências BiológicasUniversidade Federal de Santa CatarinaFlorianópolisBrazil

Personalised recommendations