Skip to main content

Advertisement

Log in

Acidic polysaccharides of Arthrospira (Spirulina) platensis induce the synthesis of TNF-α in RAW macrophages

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The study of the enhancement of the immune system by administration of algal cell components is a current research field of great interest for future development of algal biotechnology. Arthrospira (Spirulina) platensis is one of the key organisms, showing interesting results in the treatment of certain tumors, viral infection, and immunodeficiency. Polysaccharides from Arthrospira, together with phycocyanin, seem to be responsible for most of these positive effects. In this work, we isolated the acidic polysaccharide fraction from A. platensis and tested its capacity to induce the production of the proinflammatory cytokine tumor necrosis factor alpha in macrophages. For this purpose, we modified a previous isolation method developed by one of us, which includes several depigmentation steps, as well as differential partitioning with N-cetylpyridinium bromide (Cetavlon). Infrared spectroscopy of the acidic polysaccharide fraction indicates the presence of hydroxyl radicals, aliphatic residues, carbonyl groups, sulfate groups, and sulfate esters, as well as amine residues. Liquid chromatography confirmed the polysaccharidic nature of the fraction, revealing its high purity, essentially free of lipopolysaccharide (LPS) contamination (0.0017% w/w), and complying with international pharmacological standards. The results indicate that a very high production of tumor necrosis factor- α (TNF−α) occurred in macrophages in the presence of the polysaccharides in the range 5–100 μg mL−1, reaching values of 8 ng TNF-α mL−1 after 24 h and 30 ng TNF-α mL−1 after 48 h. These data demonstrate that acidic polysaccharides from Spirulina elicit TNF-α production levels comparable to LPS at ~100× higher concentration than LPS, but without significantly increasing the risk of septic shock or deleterious pyrogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdala Díaz RT, Chabrillón M, Cabello-Pasini A, Gómez-Pinchetti JL, Figueroa FL (2010) Characterization of polysaccharides from Hypnea spinella (Gigartinales) and Halopithys incurva (Ceramiales) and their effect on RAW 264.7 macrophage activity. J Appl Phycol 23:523–528

    Article  Google Scholar 

  • Adams DO, Hamilton TA (1986) Regulation of macrophage activation at the molecular level. Ann Inst Past Immunol 137:229–234

    Article  Google Scholar 

  • Beer S, Eshel A (1985) Determining phycoerythrin and phycocyanin concentrations in aqueous crude extracts of red algae. Aust J Mar Freshwat Res 36:785–792

    Article  CAS  Google Scholar 

  • Belay A, Kato T, Ota Y (1996) Spirulina (Arthrospira): potential application as an animal feed supplement. J Appl Phycol 8:303–311

    Article  Google Scholar 

  • Belay A (2002) The potential application of Spirulina (Arthrospira) as a nutritional and therapeutic supplement in health management. J Am Nutr Ass 5:27–48

    Google Scholar 

  • Bird KT, Dawes CJ, Romeo JT (1981) Light quality effects on carbon metabolism and allocation in Gracillaria verrucosa. Mar Biol 64:219–223

    Article  CAS  Google Scholar 

  • Bird KT, Habig C, De Busk T (1982) Nitrogen allocation and storage patterns in Gracillaria tikvahiae (Rhodophyta). J Phycol 18:344–348

    Article  CAS  Google Scholar 

  • Bitler CM, Viale TM, Damaj B, Crea R (2005) Hydrolyzed olive vegetation water in mice has anti-inflammatory activity. J Nutr 135:1475–1479

    PubMed  CAS  Google Scholar 

  • Cheng A, Wan F, Wang J, Jin Z, Xu X (2008) Macrophage immunomodulatory activity of polysaccharides isolated from Glycyrrhiza uralensis fish. Internat Immunophar 8:43–50

    Article  CAS  Google Scholar 

  • Clayton JR, Dortch Q, Thorensen S, Ahmed SI (1988) Evaluation of methods for the separation and analysis of proteins and free amino acids in phytoplankton samples. J Plank Res 10:341–358

    Article  CAS  Google Scholar 

  • Cood GA, Bell SG, Brooks WP (1995) Cyanobacterial toxins in water. Wat Sci Tech 21:1–13

    Google Scholar 

  • Desai V, Ramkrishnan R, Chintalwar G, Sainis KB (2007) G1-4A, an immunomodulatory polysaccharide from Tinospora cordifolia, modulates macrophage responses and protects mice against lipopolysaccharide induced endotoxic shock Internat. Immunopharmacol 7:1375–1386

    Article  CAS  Google Scholar 

  • Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for de isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  • Fox R.D. 1996. Spirulina. Production and potential. Edisud, Aix-en-Provence. 232 pp.

  • Gershwin ME, Belay A (eds) (2008) Spirulina in human nutrition and health. CRC Press, Boca Raton, 312 pp

    Google Scholar 

  • Hasko G, Szabó C, Németh ZH, Kvetan V, McCarthy PS, Vizi ES (1996) Adenosine receptor agonists differentially regulate IL-10, TNF-α, and nitric oxide production in RAW 264.7 macrophages and in endotoxemic mice. J Inmunol 157:4634–4640

    CAS  Google Scholar 

  • Hayakawa Y, Hayashi T, Hayashi K, Hayashi T, Ozawa T, Niiya T, Sakuragawa N (1996) Heparin cofactor II-dependent antithrombin activity of calcium spirulan. Blood Coagul Fibrinol 7:554–560

    Article  CAS  Google Scholar 

  • Hayakawa Y, Hayashi T, Hayashi K, Ozawa T, Niiya K, Sakuragawa N (1997) Calcium spirulan as an inducer of tissue-type plasminogen activator in human fetal lung fibroblasts. Biochim Biophys Acta 1355:241–247

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa Y, Hayashi T, Lee JB, Ozawa T, Sakuragawa N (2000) Activation of heparin cofactor II by calcium spirulan. J Biol Chem 275:11379–11382

    Article  PubMed  CAS  Google Scholar 

  • Hayashi O, Katoh T, Okuwaki Y (1994) Enhancement of antibody production in mice by dietary Spirulina platensis. J Nutr Sci Vitaminol 40:431–441

    Article  PubMed  CAS  Google Scholar 

  • Hayashi T, Hayashi K, Maeda M, Kojima I (1996a) Calcium spirulan, an inhibitor of enveloped virus replication from a blue-green alga Spirulina platensis. J Nat Prod 59:83–87

    Article  PubMed  CAS  Google Scholar 

  • Hayashi K, Hayashi T, Kojima I (1996b) A natural sulphated polysaccharide, calcium spirulan, isolated from Spirulina platensis: in vitro and ex vivo evaluation of anti-herpes simplex virus and anti-human immunodeficiency virus activities. AIDS Res Hum Retrov 12:1463–1471

    Article  CAS  Google Scholar 

  • Hayashi O, Hirahashi T, Katoh T, Miyajima H, Hirano T, Okuwakim Y (1998) Class specific influence of dietary Spirulina platensis on antibody production in mice. J Nutr Sci Vitaminol 44:841–851

    Article  PubMed  CAS  Google Scholar 

  • Hirahashi T, Matsumoto M, Hazeki K, Saeki Y, Ui M, Seya T (2002) Activation of the human innate immune system by Spirulina: augmentation of interferon production and NK cytotoxicity by oral administration of hot water extract of Spirulina platensis. Int Immunophar 2:423–434

    Article  CAS  Google Scholar 

  • Kochert G (1993) Carbohydrate determination by the phenol sulphuric acid method. In: Hellebust JA, Craigie JS (eds) Handbook of phycological methods. Physiological and biochemical methods. Cambridge University Press, Cambridge, pp 95–97

    Google Scholar 

  • Lee JB, Hayashi T, Hayashi K, Sankawa U (2000) Structural analysis of calcium spirulan (Ca-SP)-derived oligosaccharides using electrospray ionization mass spectrometry. J Nat Prod 63:136–138

    Article  PubMed  CAS  Google Scholar 

  • Martínez C, Delgado M, Pozo D, Leceta J, Calvo JR, Ganea D, Gomariz RP (1998) Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide modulate endotoxin-induced IL-6 production by murine peritoneal macrophages. J Leukoc Biol 63:591–601

    PubMed  Google Scholar 

  • Mao TK, Van de Water J, Gershwin ME (2005) Effects of a Spirulina-based dietary supplement on cytokine production from allergic rhinitis patients. J Med Food 8:27–30

    Article  PubMed  CAS  Google Scholar 

  • Meager A (1998) The molecular biology of cytokines. Wiley, Chichester

    Google Scholar 

  • Meager A (2004) Cytokines: interleukins. In: Meyers RA (ed) Encyclopedia of molecular cell biology and molecular medicine, vol 3. Wiley-VCH, Weinheim, pp 115–151

    Google Scholar 

  • Meager A (2005) Viral inhibitors and immune response mediators: the interferons. In: Meyers RA (ed) Encyclopedia of molecular cell biology and molecular medicine, vol 15. Wiley-VCH, Weinheim, pp 387–421

    Google Scholar 

  • Mishima T, Murata J, Toyoshima M, Fujii H, Nakajima M, Hayashi T, Kato T, Saiki I (1998) Inhibition of tumor invasion and metastasis by calcium spirulan (Ca-SP), a novel sulfated polysaccharide derived from a blue-green alga. Spirulina platensis Clin Exp Metastasis 16:541–550

    Article  CAS  Google Scholar 

  • Morris Quevedo HJ, Martínez Manrique CE, Abdala Díaz RT, Pupo C (2000) Evidencias preliminares de la actividad inmunomoduladora de la fracción polisacárida de origen marno PC-1. Rev Cubana Oncol 16:171–176

    Google Scholar 

  • Oh S-H, Ahn J, Kang D-H, Lee H-Y (2011) The effect of ultrasonificated extracts of Spirulina maxima on the anticancer activity. Mar Biotechnol 13:205–214

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Loyola M., Popowski Casaña G, Pérez-Castillo G., Alonso Romero H. 2003. Caracterización biológica y química del biogel del balneario San Diego de los Baños. Rev Cubana Plant Med 8 (3). Available at: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1028-47962003000300011&lng=es

  • Pouria S, de Andrade A, Barbosa J, Cavalcanti RL, Barreto VTS, Ward CJ, Preiser W, Poon GK (1998) Fatal microcystin intoxicaction in haemodialysis unit in Caruaru, Brazil. Lancet 352:21–26

    Article  PubMed  CAS  Google Scholar 

  • Qureshi MA, Ali RA (1996) Spirulina platensis exposure enhances macrophage phagocytic function in cats. Immunoph Immunotox 18:457–463

    Article  CAS  Google Scholar 

  • Qureshi MA, Kidd MT, Ali RA (1995) Spirulina platensis extract enhances chicken macrophage functions after in vitro exposure. J Nutr Inmunol 3:35–43

    Google Scholar 

  • Qureshi MA, Garlich JD, Kidd MT (1996) Dietary Spirulina platensis enhances humoral and cell-mediated immune functions in chickens. Immunoph Immunotox 18:465–476

    Article  CAS  Google Scholar 

  • Schwartz J, Shklar G (1987) Regression of experimental oral cancer by beta carotene and algae extracts. J Oral Maxillofac Surg 45:510–515

    Article  PubMed  CAS  Google Scholar 

  • Shklar G, Schwartz J (1988) Tumor necrosis factor in experimental cancer regression with alphatocopherol, beta-carotene, canthaxanthin and algae extracts. Eur J Cancer Clin Oncol 24:839–850

    Article  PubMed  CAS  Google Scholar 

  • Thorpe R, Wadhwa M, Page C, Mire-Sluis A (1999) Bioassays for the characterisation and control of therapeutic cytokines; determination of potency. Dev Biol Stand 97:61–71

    PubMed  CAS  Google Scholar 

  • Trabelsi L, M’sakni NH, Ben OH, Bacha H, Roudesli S (2009) Partial characterization of extracellular polysaccharides produced by cyanobacterium Arthrospira platensis. Biotech Biopr Eng 14:27–31

    Article  CAS  Google Scholar 

  • Trinchieri G (1993) Interleukin-12 and its role in the generation of TH1 cells. Immunol Tod 14:335–339

    Article  CAS  Google Scholar 

  • Ushio S, Namba M, Okura T, Hattori K, Nukada Y, Akita K, Tanabe F, Konishi K, Micallef M, Fujii M, Torigoe K, Tanomoto T, Fukuda S, Ikeda M, Okamura H, Kurimoto M (1996) Cloning of the cDNA for human IFN-g-inducing factor, expression in Escherichia coli, and studies on the biologic activities of the protein. J Immunol 156:4274–4282

    PubMed  CAS  Google Scholar 

  • Zarrouk, C. 1966. Contribution á l’étude d’une cyanophycée: influence de divers facteurs physiques et chimiques sur la croissance et la photosynthèse de Spirulina maxima (Setch et Gardner) Geitler. Thèse de doctorat, Faculté des Sciences de l’Université de Paris.

Download references

Acknowledgments

This work has been supported in part by a binational project (Acción Integrada HG2004-0025 to C.J. and to T.G.S.). We thank Dr. Ma Ángeles Vargas and Dr. Luis Alemany (Chemical Engineering Department, UMA) for their technical assistance in the FT-IR analysis, Prof. Francisco R. Sarabia and Miss Francisca Martín-Gálvez (Organic Chemistry Department, UMA) for HPLC analysis, Mr. Casimiro Cárdenas (Cell Culture Division, SCAI, UMA) for technical help during macrophage cultivation, and Mrs. Azucena Muñoz García (Pharmacology Section, CIMES, UMA) for LPS contamination assays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Jiménez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parages, M.L., Rico, R.M., Abdala-Díaz, R.T. et al. Acidic polysaccharides of Arthrospira (Spirulina) platensis induce the synthesis of TNF-α in RAW macrophages. J Appl Phycol 24, 1537–1546 (2012). https://doi.org/10.1007/s10811-012-9814-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-012-9814-4

Keywords

Navigation