Journal of Applied Phycology

, Volume 24, Issue 3, pp 541–546 | Cite as

Raman microspectroscopy of algal lipid bodies: β-carotene quantification

  • Zdeněk Pilát
  • Silvie Bernatová
  • Jan Ježek
  • Mojmír Šerý
  • Ota Samek
  • Pavel Zemánek
  • Ladislav Nedbal
  • Martin Trtílek
Article

Abstract

Advanced optical instruments can serve for analysis and manipulation of individual living cells and their internal structures. We have used Raman microspectroscopic analysis for assessment of β-carotene concentration in algal lipid bodies (LBs) in vivo. Some algae contain β-carotene in high amounts in their LBs, including strains which are considered useful in biotechnology for lipid and pigment production. We have devised a simple method to measure the concentration of β-carotene in a mixture of algal storage lipids from the ratio of their Raman vibrations. This finding may allow fast acquisition of β-carotene concentration valuable, e.g., for Raman microspectroscopy assisted cell sorting for selection of the overproducing strains. Furthermore, we demonstrate that β-carotene concentration can be proportional to LB volume and light intensity during the cultivation. We combine optical manipulation and analysis on a microfluidic platform in order to achieve fast, effective, and non-invasive sorting based on the spectroscopic features of the individual living cells. The resultant apparatus could find its use in demanding biotechnological applications such as selection of rare natural mutants or artificially modified cells resulting from genetic manipulations.

Keywords

Raman microspectroscopy Microalgae Trachydiscus minutus Biotechnology Carotenoids 

References

  1. Becker EW (2007) Micro-algae as a source of protein. Biotechnol Adv 25:207–210PubMedCrossRefGoogle Scholar
  2. Ben-Amotz A, Avron M (1983) On the factors which determine massive β-carotene accumulation in the halotolerant alga Dunaliella bardawil. Plant Physiol 72:593–597PubMedCrossRefGoogle Scholar
  3. Ben-Amotz A, Lers A, Avron M (1988) Stereoisomers of β-carotene and phytoene in the alga Dunaliella bardawil. Plant Physiol 86:1286–1291PubMedCrossRefGoogle Scholar
  4. Bischoff HW, Bold HC (1963) Phycological studies IV. Some soil algae from Enchanted Rock and related algal species. Univ Texas Publ 6318:1–95Google Scholar
  5. Bold HC (1949) The morphology of Chlamydomonas chlamydogama sp. nov. Bull Torrey Bot Club 76:101–108CrossRefGoogle Scholar
  6. Brandt NN, Brovko OO, Chikishev AY, Paraschuk OD (2006) Optimization of the rolling-circle filter for Raman background subtraction. Appl Spectrosc 60:288–293PubMedCrossRefGoogle Scholar
  7. Carvalho AP, Malcata FX (2005) Optimization of x-3 fatty acid production by microalgae: crossover Effects of CO2 and light intensity under batch and continuous cultivation modes. Mar Biotechnol 7:381–388PubMedCrossRefGoogle Scholar
  8. Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process 48:1146–1151CrossRefGoogle Scholar
  9. Elsey D, Jameson D, Raleigh B, Cooney MJ (2007) Fluorescent measurement of microalgal neutral lipids. J Microbiol Methods 68:639–642PubMedCrossRefGoogle Scholar
  10. Fuentes MMR, Fernandez GGA, Perez JAS, Guerrero JLG (2000) Biomass nutrient profiles of the microalga Porphyridium cruentum. Food Chem 70:345–353CrossRefGoogle Scholar
  11. Garcia-Malea MC, Brindley C, Del Rio E, Acien FG, Fernandez JM, Molina E (2005) Modeling of growth and accumulation of carotenoids in Haematococcus pluvialis as a function of irradiance and nutrients supply. Biochem Eng J 26:107–114CrossRefGoogle Scholar
  12. Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36:269–274PubMedCrossRefGoogle Scholar
  13. Guiheneuf F, Mimouni V, Ulmann L, Tremblin G (2009) Combined effects of irradiance level and carbon source on fatty acid and lipid class composition in the microalga Pavlova lutheri commonly used in mariculture. J Exp Mar Biol Ecol 369:136–143CrossRefGoogle Scholar
  14. Heraud P, Beardall J, McNaughton D, Wood BR (2007) In vivo prediction of the nutrient status of individual microalgal cells using Raman microspectroscopy. FEMS Microbiol Lett 275:24–30PubMedCrossRefGoogle Scholar
  15. Huang GH, Chen G, Chen F (2009) Rapid screening method for lipid production in alga based on Nile Red fluorescence. Biomass Bioener 33:1386–1392CrossRefGoogle Scholar
  16. Huang YY, Beal CM, Cai WW, Ruoff RS, Terentjev EM (2010) Micro-Raman spectroscopy of algae: composition analysis and fluorescence background behavior. Biotech Bioeng 105:889–898Google Scholar
  17. Lamers PP, van de Laak CCW, Kaasenbrood PS, Lorier J, Janssen M, De Vos RCH, Bino RJ, Wijffels RH (2010) Carotenoid and fatty acid metabolism in light-stressed Dunaliella salina. Biotech Bioeng 106:638–648CrossRefGoogle Scholar
  18. Lers A, Biener Y, Zamir A (1990) Photoinduction of massive β-carotene accumulation by the alga Dunaliella bardawil. Plant Physiol 93:389–395PubMedCrossRefGoogle Scholar
  19. Parker SF, Tavender SM, Dixon NM, Herman H, Williams KPJ, Maddams WF (1999) Raman spectrum of β-carotene using laser lines from green (514.5 nm) to near-infrared (1064 nm): implications for the characterization of conjugated polyenes. Appl Spectroscopy 53:86–91CrossRefGoogle Scholar
  20. Rabbani S, Beyer Pv, Lintig J, Hugueney P, Kleinig H (1998) Induced β-carotene synthesis driven by triacylglycerol deposition in the unicellular alga Dunaliella bardawil. Plant Physiol 116:1239–1248PubMedCrossRefGoogle Scholar
  21. Rezanka T, Petrankova M, Cepak V, Pribyl P, Sigler K, Cajthaml T (2010) Trachydiscus minutus, a new biotechnological source of eicosapentaenoic acid. Folia Microbiol 55:265–269CrossRefGoogle Scholar
  22. Samek O, Jonas A, Pilat Z, Zemanek P, Nedbal L, Triska J, Kotas P, Trtilek M (2010) Raman microspectroscopy of individual algal cells: sensing unsaturation of storage lipids in vivo. Sensors 10:8635–8651PubMedCrossRefGoogle Scholar
  23. Samek O, Zemanek P, Jonas A, Telle HH (2011) Characterization of oil-producing microalgae using Raman spectroscopy. Laser Phys Lett 8:701–709CrossRefGoogle Scholar
  24. Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg Res 1:20–43CrossRefGoogle Scholar
  25. Setlik I (1967) Contamination of algal cultures by heterotrophic microorganisms and its prevention. Ann. Rep. Algol. F. Y. 1966, Trebon, CSAV, Inst. Microbiol.: 89–100.Google Scholar
  26. Solovchenko AE, Khozin-Goldberg I, Cohen Z, Merzlyak MN (2009) Carotenoid-to-chlorophyll ratio as a proxy for assay of total fatty acids and arachidonic acid content in the green microalga Parietochloris incisa. J Appl Phycol 21:361–366CrossRefGoogle Scholar
  27. Solovchenko AE, Khozin-Goldberg I, Recht L, Boussiba S (2011) Stress-induced changes in optical properties, pigment and fatty acid content of Nannochloropsis sp.: implications for non-destructive assay of total fatty acids. Mar Biotech 13:527–535CrossRefGoogle Scholar
  28. Su CH, Fu CC, Chang YC, Nair GR, Ye JL, Chu IM, Wu WT (2008) Simultaneous estimation of chlorophyll a and lipid contents in microalgae by three-color analysis. Biotech Bioeng 99:1034–1039CrossRefGoogle Scholar
  29. Wu H, Volponi JV, Oliver AE, Parikh AN, Simmons BA, Singh S (2011) In vivo lipidomics using single-cell Raman spectroscopy. Proc Nat Ac Sci 108:3809–3814CrossRefGoogle Scholar
  30. Xie C, Goodman C, Dinno MA, Li YQ (2004) Real-time Raman spectroscopy of optically trapped living cells and organelles. Optical Express 25:6208–6214CrossRefGoogle Scholar
  31. Yeh KL, Chang JS, Chen WM (2010) Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga Chlorella vulgaris ESP-31. Eng Life Sci 10:201–208CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Zdeněk Pilát
    • 1
  • Silvie Bernatová
    • 1
  • Jan Ježek
    • 1
  • Mojmír Šerý
    • 1
  • Ota Samek
    • 1
  • Pavel Zemánek
    • 1
  • Ladislav Nedbal
    • 2
  • Martin Trtílek
    • 3
  1. 1.Institute of Scientific Instruments of the AS CR, v.v.i.Academy of Sciences of the Czech RepublicBrnoCzech Republic
  2. 2.Global Change Research Centre of the AS CR, v.v.i.Academy of Sciences of the Czech RepublicBrnoCzech Republic
  3. 3.Photon Systems InstrumentsDrásovCzech Republic

Personalised recommendations