Skip to main content

Advertisement

Log in

Microalgae mass culture: the constraints of scaling-up

Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

There is overwhelming evidence that microalgae would be the logical source of oils for biodiesel production, the best option for CO2 sequestration and numerous other applications. However, this apparent lucrative approach is still in its infancy. In order to impact on global energy needs, bioremediation and other potential applications, vast quantities of biomass must be produced at a reliable rate and as cost-effective as possible. When extrapolating volumetric rates from laboratory or small-scale outdoor cultures to large-scale outdoor areal production rates, it becomes apparent that many of the potential claims are either misleading or still only a dream. Open raceway ponds are at present the only feasible culture system for the production of millions of tons of biomass. To date, at best photosynthetic efficiencies of around 1.2% have been achieved, but with present understanding and know-how efficiencies of double that should be achievable, especially when vertical mixing is increased in raceway ponds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Burlew JS (1953) Algal culture: from laboratory to pilot plant. Carnegie Institution of Washington publication 600. Carnegie Institution of Washington, Washington, DC, 357 pp

    Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131

    Article  Google Scholar 

  • Congming L, Vonshak A (1999) Photoinhibition in outdoor Spirulina platensis cultures assessed by polyphasic chlorophyll fluorescence transients. J Appl Phycol 11:355–359

    Article  Google Scholar 

  • Dodd JC (1986) Elements of pond design and construction. In: Richmond A (ed) CRC handbook of microalgal mass culture. CRC, Boca Raton, pp 265–283

    Google Scholar 

  • Grobbelaar JU (1994) Turbulence in mass algal cultures and the role of light/dark fluctuations. J Appl Phycol 6:331–335

    Article  Google Scholar 

  • Grobbelaar JU (2000) Physiological and technological considerations for optimizing mass algal cultures. J Appl Phycol 12:201–206

    Article  Google Scholar 

  • Grobbelaar JU (2007) Photosynthetic characteristics of Spirulina platensis grown in commercial-scale open outdoor raceway ponds: what do the organisms tell us? J Appl Phycol 19:591–598

    Article  CAS  Google Scholar 

  • Grobbelaar JU (2009a) From laboratory to commercial production: a case study of a Spirulina (Arthrospira) facility at Musina, South Africa. J Appl Phycol 21:523–527

    Article  CAS  Google Scholar 

  • Grobbelaar JU (2009b) Upper limits of photosynthetic productivity and problems of scaling. J Appl Phycol 21:519–522

    Article  Google Scholar 

  • Grobbelaar JU (2010) Microalgal biomass production: challenges and realities. Photosynth Res 106:135–144

    Article  PubMed  CAS  Google Scholar 

  • Grobbelaar JU, Soeder CJ, Stengel E (1990) Modeling algal productivity in large outdoor cultures and waste treatment systems. Biomass 12:297–314

    Article  Google Scholar 

  • Grobbelaar JU, Nedbal L, Tichy V (1996) Influence of high frequency light/dark fluctuations on photosynthetic characteristics of microalgae photoacclimated to different light intensities and implications for mass algal cultivation. J Appl Phycol 8:335–345

    Article  CAS  Google Scholar 

  • Laws EA, Berning JL (1991) A study of the energetic and economics of microalgal mass culture with the marine chlorophyte Tetraselmis suecica: implications for use of power plant stack gasses. Biotechnol Bioeng 37:936–947

    Article  PubMed  CAS  Google Scholar 

  • Laws EA, Terry KL, Wickman J, Challup MS (1983) A simple algal production system designed to utilize the flashing light effect. Biotechnol Bioeng 25:2319–2335

    Article  PubMed  CAS  Google Scholar 

  • Lee Y-K (2001) Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol 13:307–315

    Article  Google Scholar 

  • Lee YK, Ding SY, Low CS, Chang YC, Forday WL, Chew PC (1995) Design and performance of an α-type tubular photobioreactor for mass cultivation of microalgae. J Appl Phycol 7:47–51

    Article  CAS  Google Scholar 

  • Nickelsen K (2009) The construction of a scientific model: Otto Warburg and the building block strategy. Stud His Philos Biol biome Sci 40:73–86

    Article  Google Scholar 

  • Oswald WJ (1980) Algal production—problems, achievements and potential. In: Shelef G, Soeder CJ (eds) Algae biomass. Elsevier/North Holland Biomedical, Amsterdam, pp 1–8

    Google Scholar 

  • Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293

    Article  PubMed  CAS  Google Scholar 

  • Richmond A (1996) Efficient utilization of high irradiance for production of photoautotrophic cell mass: a survey. J Appl Phycol 8:381–387

    Article  CAS  Google Scholar 

  • Richmond A (2000) Microalgal biotechnology at the turn of the millennium: a personal view. J Appl Phycol 12:441–451

    Article  Google Scholar 

  • Richmond A, Vonshak A (1978) Spirulina culture in Israel. Arch Hydrobiol Beih Ergebn Limnol 11:274–280

    Google Scholar 

  • Setlik I, Sust M, Malek I (1970) Dual purpose open circulation units for large scale culture of algae in temperate zones. 1. Basic design consideration and scheme of pilot plant. Algol Stud 1:111–164

    Google Scholar 

  • Soeder CJ (1980) The scope of microalgae for food and feed. In: Shelef G, Soeder CJ (eds) Algae biomass. Elsevier/North Holland Biomedical, Amsterdam, pp 9–20

    Google Scholar 

  • Tredici MR (2010) Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels 1:143–162

    Article  CAS  Google Scholar 

  • Tredici MR, Zitelli C (1998) Efficiency of sunlight utilization: tubular versus flat photobioreactors. Biotechnol Bioeng 57:187–197

    Article  PubMed  CAS  Google Scholar 

  • Vonshak A, Torzillo G (2004) Environmental stress physiology. In: Richmond A (ed) Handbook of microalgal culture. Blackwell Science, Oxford, pp 57–82

    Google Scholar 

  • Zarrouck C (1966) Contribution à l’ètude d’une cyanophycèe. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthèse de Spirulina maxima. Ph.D. thesis, University of Paris

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan U. Grobbelaar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grobbelaar, J.U. Microalgae mass culture: the constraints of scaling-up. J Appl Phycol 24, 315–318 (2012). https://doi.org/10.1007/s10811-011-9728-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-011-9728-6

Keywords

Navigation