Advertisement

Journal of Applied Phycology

, Volume 24, Issue 4, pp 857–862 | Cite as

Bioethanol production from the acid hydrolysate of the carrageenophyte Kappaphycus alvarezii (cottonii)

  • Maria Dyah Nur Meinita
  • Ji-Young Kang
  • Gwi-Taek Jeong
  • Hyun Min Koo
  • Sung Min Park
  • Yong-Ki HongEmail author
Article

Abstract

Seaweed resources can be used as raw materials to produce bioethanol, a renewable biofuel, to overcome fossil fuel depletion and environmental problems. Red seaweeds possess high amount of bioethanol-producible carbohydrates. Among 55 species tested, the carrageenophyte Kappaphycus alvarezii (also known as cottonii) was selected as the best resource for bioethanol production. This species is one of the most abundant and easily cultured red seaweeds. The main components of carrageenan are d-galactose-4-sulfate and 3,6-anhydro-d-galactose-2-sulfate, which are potentially fermentable d-typed carbohydrates. The seaweed powder was hydrolyzed with 0.2 M sulfuric acid and fermented with brewer’s yeast. The ethanol yield from the K. alvarezii hydrolysate was 0.21 g g−1-galactose, which corresponded to a 41% theoretical yield. It revealed a relative ethanol production of 66% comparing to that of pure galactose.

Keywords

Acid hydrolysis Bioethanol Carrageenophyte Cottonii Kappaphycus alvarezii 

Notes

Acknowledgments

This research was supported by a grant from the Samsung Advanced Institute of Technology, Korea. We thank the Brain Busan 21 program for graduate support (MDNM, JYK).

References

  1. Adams MJ, Gallagher JA, Donnison IS (2009) Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. J Appl Phycol 21:569–574CrossRefGoogle Scholar
  2. Ahmedna M, Marshall WE, Rao RM (2000) Surface properties of granular activated carbons from agricultural by-products and their effects on raw sugar decolorization. Biores Technol 71:103–112CrossRefGoogle Scholar
  3. Chandel AK, Chan ES, Ravinder R, Narasu ML, Rao VL, Ravindra P (2007) Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnol Mol Biol Rev 2:14–32Google Scholar
  4. Chaplin MF (1986) Monosaccharide. In: Chaplin MF, Kennedy JF (eds) Carbohydrate analysis: a practical approach. IRC Press, Oxford, pp 1–36Google Scholar
  5. Chapman VJ, Chapman DJ (1980) Seaweeds and their uses. Chapman and Hall, LondonCrossRefGoogle Scholar
  6. de Ruiter GA, Rudolph B (1997) Carrageenan biotechnology. Trends Food Sci Technol 8:389–395CrossRefGoogle Scholar
  7. Goh CS, Lee KT (2010) A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development. Renew Sustain Energ Rev 14:842–848CrossRefGoogle Scholar
  8. Horn SJ, Aasen IM, Østgaard K (2000) Ethanol production from seaweed extract. J Ind Microbiol Biotechnol 25:249–254CrossRefGoogle Scholar
  9. John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Biores Technol 102:186–193CrossRefGoogle Scholar
  10. Jol CN, Neiss TG, Penninkhof B, Rudolph B, Ruiter GAD (1999) A novel high-performance anion-exchange chromatographic method for the analysis of carrageenans and agars containing 3,6-anhydrogalactose. Anal Biochem 268:213–222PubMedCrossRefGoogle Scholar
  11. Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26PubMedCrossRefGoogle Scholar
  12. Kochert G (1978) Carbohydrate determination by the phenol-sulfuric acid method. In: Hellebust JA, Craigie JS (eds) Handbook of phycological methods, vol II, Physiological and biochemical methods. Cambridge University Press, Cambridge, pp 95–97Google Scholar
  13. Larsson S, Palmqvist E, Hagerdal BH, Tengborg C, Stenberg K, Zacchi G, Nilvebrant NO (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb Technol 24:151–159CrossRefGoogle Scholar
  14. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  15. McHugh D (2003) A guide to the seaweed industry.: Fisheries Technical Paper. FAO, RomeGoogle Scholar
  16. Miyafuji H, Danner H, Neureiter M, Thomasser C, Bvochora J, Szolar O, Braun R (2003) Detoxification of wood hydrolysates with wood charcoal for increasing the fermentability of hydrolysates. Enzyme Microb Technol 32:396–400CrossRefGoogle Scholar
  17. Mussatto SI, Roberto IC (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bio Technol 93:1–10CrossRefGoogle Scholar
  18. Neish IC (2008) Good agronomy practices for Kappaphycus and Eucheuma. Seaplant.net Foundation, IndonesiaGoogle Scholar
  19. Pambudi L, Meinita MDN, Ariyati RW (2010) Seaweed cultivation in Indonesia: recent status. Mar Biosci Biotechnol 4:6–10Google Scholar
  20. Percival E (1979) The polysaccharide of green, red and brown seaweeds: their basic structure, biosynthesis and function. Br Phycol J 14:103–117CrossRefGoogle Scholar
  21. Pereira L, Amado AM, Critchley AT, van de Velde F, Riberro-Claro PJA (2009) Identification of selected seaweed polysaccharides (phycocolloids) by vibrational spectroscopy (FTIR-ATR and FT-Raman). Food Hydrocolloid 23:1903–1909CrossRefGoogle Scholar
  22. Prescott SC, Dun CG (1959) Industrial microbiology. McGraw-Hill, New YorkGoogle Scholar
  23. Radin NS (1981) Extraction of lipids with hexane-isopropanol. Method Enzymol 72:5–7CrossRefGoogle Scholar
  24. Wi SG, Kim HJ, Mahadevan SA, Yang DJ, Bae HJ (2009) The potential value of the seaweed Ceylon moss (Gelidium amansii) as an alternative bioenergy resource. Bioresour Technol 100:6658–6660PubMedCrossRefGoogle Scholar
  25. Yun EJ, Shin MH, Yoon JJ, Kim YJ, Choi IG, Kim KH (2011) Production of 3,6-anhydro-L-galactose from agarose by agarolytic enzymes of Saccharophagus degradans 2–40. Process Biochem 46:88–93CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Maria Dyah Nur Meinita
    • 1
    • 3
  • Ji-Young Kang
    • 1
  • Gwi-Taek Jeong
    • 1
  • Hyun Min Koo
    • 2
  • Sung Min Park
    • 2
  • Yong-Ki Hong
    • 1
    Email author
  1. 1.Department of BiotechnologyPukyong National UniversityBusanSouth Korea
  2. 2.Bio and Health LaboratorySamsung Advanced Institute of TechnologyYonginSouth Korea
  3. 3.Department of Fisheries and Marine ScienceJenderal Soedirman UniversityPurwokertoIndonesia

Personalised recommendations