Journal of Applied Phycology

, Volume 24, Issue 4, pp 641–647 | Cite as

Analysis of expressed sequence tags from the agarophyte Gracilaria tenuistipitata (Rhodophyta)

  • Pi Nyvall Collén
  • Jonas Collén
  • Marcelo da Silva Reis
  • Marianne Pedersén
  • João C. Setubal
  • Alessandro M. Varani
  • Pio Colepicolo
  • Mariana C. Oliveira


A total of 3,631 expressed sequence tags (ESTs) were established from two size-selected cDNA libraries made from the tetrasporophytic phase of the agarophytic red alga Gracilaria tenuistipitata. The average sizes of the inserts in the two libraries were 1,600 bp and 600 bp, with an average length of the edited sequences of 850 bp. Clustering gave 2,387 assembled sequences with a redundancy of 53%. Of the ESTs, 65% had significant matches to sequences deposited in public databases, 11% to proteins without known function, and 35% were novel. The most represented ESTs were a Na/K-transporting ATPase, a hedgehog-like protein, a glycine dehydrogenase and an actin. Most of the identified genes were involved in primary metabolism and housekeeping. The largest functional group was thus genes involved in metabolism with 14% of the ESTs; other large functional categories included energy, transcription, and protein synthesis and destination. The codon usage was examined using a subset of the data, and the codon bias was found to be limited with all codon combinations used.


Agarophyte Codon bias Expressed sequence tags Gracilaria tenuistipitata Rhodophyta 



This research was performed under a Swedish–Brazilian research cooperation founded by The Swedish Foundation for International Cooperation in Research (STINT). Support was also obtained from the State of São Paulo Research Foundation (FAPESP) and the Brazilian National Council for Scientific and Technological Development (CNPq). E.C. Oliveira collected the strain used in this work.


  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  2. Asamizu E, Nakajima M, Kitade Y, Saga N, Nakamura Y, Tabata S (2003) Comparison of RNA expression profiles between the two generations of Porphyra yezoensis (Rhodophyta), based on expressed sequence tag frequency analysis. J Phycol 39:923–930CrossRefGoogle Scholar
  3. Aspilla PS, Antonio AACB, Zuccarello GC, Rojas NRL (2010) A partial expressed sequence tag (EST) library of the economically important red alga Eucheuma denticulatum (N.L. Burham) F.C. Collins and Hervey. Phil Sci Lett 3:109–120Google Scholar
  4. Barufi JB, Cabral de Oliveira E, Plastino EM, Cabral de Oliveira M (2010) Life history, morphological variability and growth rates of the life phases of Gracilaria tenuistipitata (Rhodophyta: Gracilariales) in vitro. Sci Mar. doi:10.3989/scimar.2010.74n2297 Google Scholar
  5. Carnicas E, Jiménez C, Niell FX (1999) Effects of irradiance on the pigment composition of Gracilaria tenuistipitata var. liui Zhang et Xia. J Photochem Photobiol B Biol 50:149–158CrossRefGoogle Scholar
  6. Chiang Y-M (1981) Cultivation of Gracilaria (Rhodophyta, Gigartinales) in Taiwan. In: Levring T (ed) 10th International Seaweed Symposium. Walter de Gruyter & Co., Berlin, pp 569–574Google Scholar
  7. Collén J, Pinto E, Pedersén M, Colepicolo P (2003) Induction of oxidative stress in the red macroalga Gracilaria tenuistipitata by pollutant metals. Arch Environ Contam Toxicol 45:337–342PubMedCrossRefGoogle Scholar
  8. Collén J, Roeder V, Rousvoal S, Collin O, Kloareg B, Boyen C (2006) An expressed sequence tag analysis of thallus and regenerating protoplasts of Chondrus crispus (Gigartinales, Rhodophyceae). J Phycol 42:104–112CrossRefGoogle Scholar
  9. Falcão VDR, Tonon AP, Oliveira MC, Colepicolo P (2008) RNA isolation method for polysaccharide rich algae: agar producing Gracilaria tenuistipitata (Rhodophyta). J Appl Phycol 20:9–12CrossRefGoogle Scholar
  10. Falcão VR, Oliveira MC, Colepicolo P (2010) Molecular characterization of nitrate reductase gene and its expression in the marine red alga Gracilaria tenuistipitata (Rhodophyta). J Appl Phycol 22:613–622CrossRefGoogle Scholar
  11. Fan X, Fang Y, Hu S, Wang G (2007) Generation and analysis of 5,318 expressed sequence tags from the filamentous sporophyte of Porphyra haitanensis (Rhodophyta). J Phycol 43:1287–1294CrossRefGoogle Scholar
  12. Fredericq S, Hommersand MH (1989) Proposal of the Gracilariales ord. nov. (Rhodophyta) based on an analysis of the reproductive development of Gracilaria verrucosa. J Phycol 25:213–227CrossRefGoogle Scholar
  13. García-Sánchez MJ, Fernández JA, Niell X (1994) Effect of inorganic carbon supply on the photosynthetic physiology of Gracilaria tenuistipitata. Planta 194:55–61CrossRefGoogle Scholar
  14. Haglund K, Pedersén M (1992) Growth of the red alga Gracilaria tenuistipitata at high pH. Influence of some environmental factors and correlation to an increased carbonic-anhydrase activity. Bot Mar 35:579–587CrossRefGoogle Scholar
  15. Haglund K, Pedersén M (1993) Outdoor pond cultivation of the subtropical marine red alga Gracilaria tenuistipitata in brackish water in Sweden. Growth, nutrient uptake, co-cultivation with rainbow trout and epiphyte control. J Appl Phycol 5:271–284CrossRefGoogle Scholar
  16. Haglund K, Björklund M, Gunnare S, Sandberg A, Olander U, Pedersén M (1996) New method for toxicity assessment in marine and brackish environments using the macroalga Gracilaria tenuistipitata (Gracilariales, Rhodophyta). Hydrobiologia 326/327:317–325CrossRefGoogle Scholar
  17. Hagopian JC, Reis M, Kitajima JP, Bhattacharya D, Oliveira MC (2004) Comparative analysis of the complete plastid genome sequence of the red alga Gracilaria tenuistipitata var. liui provides insights on the evolution of rhodoplasts and their relationship to other plastids. J Mol Evol 59:464–477PubMedCrossRefGoogle Scholar
  18. Hu S, Tang CH, Wu M (1996) Cadmium accumulation by several seaweeds. Sci Total Environ 187:65–71CrossRefGoogle Scholar
  19. Lee T-M, Chang Y-C (1999) An increase of ornithine δ-aminotransferase-mediated proline synthesis in relation to high-temperature injury in Gracilaria tenuistipitata (Gigartinales, Rhodophyta). J Phycol 35:84–88CrossRefGoogle Scholar
  20. Lee T-M, Chang Y-C, Lin Y-H (1999) Differences in physiological responses between winter and summer Gracilaria tenuistipitata (Gigartinales, Rhodophyta) to varying temperature. Bot Bull Acad Sin 49:93–100Google Scholar
  21. Lee H, Lee HK, An G, Lee YK (2007) Analysis of expressed sequence tags from the red alga Griffithsia okiensis. J Microbiol 45:541–546PubMedGoogle Scholar
  22. Lopes PF, Oliveira MC, Colepicolo P (1997) Diurnal fluctuation of nitrate reductase activity in the marine red alga Gracilaria tenuistipitata (Rhodophyta). J Phycol 33:225–231CrossRefGoogle Scholar
  23. Lopes PF, Oliveira MC, Colepicolo P (2002) Characterization and daily variation of nitrate reductase in Gracilaria tenuistipitata (Rhodophyta). Biochem Biophys Res Commun 295:50–54PubMedCrossRefGoogle Scholar
  24. Lluisma AO, Ragan MA (1997) Expressed sequence tags (ESTs) from the marine red alga Gracilaria gracilis. J Appl Phycol 9:287–293CrossRefGoogle Scholar
  25. MacKay RM, Gallant JW (1991) Beta-tubulins are encoded by at least 4 genes in the brown alga Ectocarpus variabilis. Plant Mol Biol 17:487–492PubMedCrossRefGoogle Scholar
  26. Mercado JM, Sánchez P, Carmona R, Niell FX (2001) Limited acclimation of photosynthesis to blue light in the sea­weed Gracilaria tenuistipitata. Physiol Plant 114:491–498CrossRefGoogle Scholar
  27. Mewes HW, Dietmann S, Frishman D, Gregory R, Mannhaupt G, Mayer KFX, Münsterkötter M, Ruepp A, Spannagl M, Stümpflen V, Rattei T (2008) MIPS: analysis and annotation of genome information in 2007. Nuc Acids Res 36:D196–D201CrossRefGoogle Scholar
  28. Nikaido I, Asamizu E, Nakajima M, Nakamura Y, Saga N, Tabata S (2000) Generation of 10,154 expressed sequence tags from a leafy gametophyte of a marine red alga, Porphyra yezoensis. DNA Res 7:223–227PubMedCrossRefGoogle Scholar
  29. Nyvall P, Pelloux J, Davies HV, Pedersén M, Viola R (1999) Purification and characterisation of a novel starch synthase selective for uridine 5′-diphosphate glucose from the red alga Gracilaria tenuistipitata. Planta 209:143–152PubMedCrossRefGoogle Scholar
  30. Nyvall Collén P, Camitz A, Hancock RD, Viola R, Pedersén M (2004) Effect of nutrient deprivation and resupply on metabolites and enzymes related to carbon allocation in Gracilaria tenuistipitata (Rhodophyta). J Phycol 40:305–314CrossRefGoogle Scholar
  31. Ohlrogge J, Benning C (2000) Unraveling plant metabolism by EST analysis. Curr Opin Plant Biol 3:224–228PubMedGoogle Scholar
  32. Oliveira EC, Paula EJ, Plastino EM, Petti R (1995) Metolodogias para cultivo no axenico de macroalgas marinas in vitro. In: Alveal K, Ferrario ME, Oliveira EC, Sar Y (eds) Manual de métodos ficologicos. Universidad de Concepcion, Concepcion, ISBN 956-227-113-7Google Scholar
  33. Oliveira EC, Plastino EM (1994) Gracilariaceae. In: Akatsuka I (ed) Biology of economic algae. SSB Academic Publi, The Hague, pp 185–226Google Scholar
  34. Ruepp A, Zollner A, Maier D, Albermann K, Hani J, Mokrejs M, Tetko I, Güldener U, Mannhaupt G, Münsterkötter M, Mewes HW (2004) The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nuc Acids Res 32:5539–5545CrossRefGoogle Scholar
  35. Skriptsova AV, Nabivailo YV (2009) Comparison of three gracilarioids: growth rate, agar content and quality. J Appl Phycol 21:443–450CrossRefGoogle Scholar
  36. Sun X, Yang G, Mao Y, Zhang X, Sui Z, Qin S (2002) Analysis of expressed sequence tags of a marine red alga, Gracilaria lemaneiformis. Prog Nat Sci 12:518–523Google Scholar
  37. Takahashi MM (2010) Sequênciamento e análise do genoma mitocondrial de Gracilaria tenuistipitata (Gracilariales, Rhodophyta). Master Thesis, Institute of Biosciences, University of São Paulo.
  38. Teo S-S, Ho C-L, Teoh S, Lee W-W, Tee J-M, Rahim RA, Phang S-M (2007) Analyses of expressed sequence tags from an agarophyte, Gracilaria changii (Gracilariales, Rhodophyta). Eur J Phycol 42:41–46CrossRefGoogle Scholar
  39. Xu Y, Wei W, Fang J (2009) Effects of salinity, light and temperature on growth rates of two species of Gracilaria (Rhodophyta). Chin J Oceanol Limnol 27:350–355CrossRefGoogle Scholar
  40. Yu S, Pedersén M (1993) α-1,4-Glucan lyase, a new class of starch/glycogen-degrading enzyme. Planta 191:137–142PubMedCrossRefGoogle Scholar
  41. Yokoya NS, West JA, Luchi AE (2004) Effects of plant growth regulators on callus formation, growth and regeneration in axenic tissue cultures of Gracilaria tenuistipitata and Gracilaria perplexa (Gracilariales, Rhodophyta). Phycol Res 52:244–254CrossRefGoogle Scholar
  42. Yoon HS, Müller KM, Sheath RG, Ott FD, Bhattacharya D (2006) Defining the major lineages of red algae (Rhodophyta). J Phycol 42:482–492CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Pi Nyvall Collén
    • 1
    • 6
  • Jonas Collén
    • 2
  • Marcelo da Silva Reis
    • 3
  • Marianne Pedersén
    • 4
  • João C. Setubal
    • 5
  • Alessandro M. Varani
    • 1
  • Pio Colepicolo
    • 2
  • Mariana C. Oliveira
    • 1
  1. 1.Department of Botany, Institute of BiosciencesUniversity of São PauloSão PauloBrazil
  2. 2.Department of Biochemistry, Institute of ChemistryUniversity of São PauloSão PauloBrazil
  3. 3.Departement of mathematics and statisticsUniversity of São PauloSão PauloBrazil
  4. 4.Department of BotanyStockholm UniversityStockholmSweden
  5. 5.Virginia Bioinformatics InstituteVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  6. 6.Université Pierre et Marie Curie, Paris VI, CNRS, Marine Plants and biomolecules, UMR 7139RoscoffFrance

Personalised recommendations