Advertisement

Journal of Applied Phycology

, Volume 24, Issue 4, pp 635–639 | Cite as

Phylogenetic position of Dunaliella acidophila (Chlorophyceae) based on ITS and rbcL sequences

  • Patrícia Assunção
  • Ruth Jaén-Molina
  • Juli Caujapé-Castells
  • Adelina de la Jara
  • Laura Carmona
  • Karen Freijanes
  • Héctor Mendoza
Article

Abstract

Dunaliella acidophila is one of the most extreme acidophiles on earth and is able to survive in highly acidic habitats. This characteristic has made this organism the universal model for the study of abiotic stress. Although D. acidophila is currently circumscribed to the subgenus Pascheria within Dunaliella Teodoresco (Chlorophyceae), its taxonomic position has stirred controversy. The comparison of D. acidophila CCAP19/35 internal transcribed spacers (including ITS2 secondary structure analysis) and RuBisCo large subunit (rbcL) sequences with other Dunaliella species confirms that D. acidophila should maintain its phylogenetic position within the genus Dunaliella, suggesting its inclusion within the subgenus Dunaliella. Furthermore, the ITS1 and ITS2 data revealed that D. acidophila was highly divergent from the other freshwater species assessed, D. lateralis, with which it barely shares a 56.8% similarity.

Keywords

Chlorophyta Dunaliella acidophila Internal transcribed spacer Freshwater rbcL Taxonomy 

Notes

Acknowledgements

This research was supported by BANGEN-Banco Genético de la Macaronesia (INTERREG-IIIB, MAC/1/C070). We thank the Cabildo de Gran Canaria for allowing the collaboration of the Departamento de Biodiversidad Molecular y Banco de ADN at the Jardín Botánico Canario “Viera y Clavijo”–Unidad Asociada CSIC, and for continuous support to all its research lines. We also thank Dr. Hisayoshi Nozaki (University of Tokyo, Japan) and Dr. Mark A. Buchheim (The University of Tulsa, OK, USA) for their recommendations regarding rbcL primers. Finally, we would like to thank Dr. Matthias Wolf (University of Wuerzburg, Germany) for his help with the software for the ITS2 secondary structure analysis.

Supplementary material

10811_2011_9676_MOESM1_ESM.doc (95 kb)
Table 1 Species, culture collections, origin, ITS and rbcL Genbank accession numbers of the strains included in this study. (DOC 95 kb)
10811_2011_9676_Fig2_ESM.jpg (223 kb)
Fig. 1

Distance tree obtained with the ITS2 secondary structure analysis of Dunaliella species (see material & methods). (JPEG 223 kb)

10811_2011_9676_MOESM2_ESM.tif (2.8 mb)
High Resolution Image File (TIFF 2888 kb)

References

  1. Akaike H (1979) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723CrossRefGoogle Scholar
  2. Alfaro ME, Zoller S, Lutzoni F (2003) Bayes or bootstrap. A simulation study comparing the performance of Bayesian Markov chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence. Mol Biol Evol 20:255–266PubMedCrossRefGoogle Scholar
  3. Borowitzka MA, Siva CJ (2007) The taxonomy of the genus Dunaliella (Chlorophyta, Dunaliellales) with emphasis on the marine and halophilic species. J Appl Phycol 19:567–590CrossRefGoogle Scholar
  4. Buchheim MA, Kirkwood AE, Buchheim JA, Verghese B, Henley WJ (2010) Hypersaline soil supports a diverse community of Dunaliella (Chlorophyceae). J Phycol 46:1038–1047CrossRefGoogle Scholar
  5. Calonje M, Martín-Bravo S, Dobeš C, Gong W, Jordon-Thaden I, Kiefer C, Kiefer M, Paule J, Schmickl R, Koch MA (2009) Non-coding nuclear DNA markers in phylogenetic reconstruction. Plant Syst Evol 282:257–280CrossRefGoogle Scholar
  6. Ciniglia C, Cennamo P, Pollio A, Pinto G (2009) Phylogenetic relationships and taxonomic position of Dunaliella acidophila isolates from acidic and thermal environments. Phycologia 48:21–22Google Scholar
  7. Coleman AW (2003) ITS2 is a double-edged tool for eukaryote evolutionary comparisons. Trends Genet 19:370–375PubMedCrossRefGoogle Scholar
  8. Ettl H (1965) Untersuchungen an Flagellaten. Österr Bot Z 112:701–745CrossRefGoogle Scholar
  9. Friedrich J, Dandekar T, Wolf M, Müller T (2005) ProfDist: a tool for the construction of large phylogenetic trees based on profile distances. Bioinformatics 21:2108–2109PubMedCrossRefGoogle Scholar
  10. Gimmler H, Weis U (1992) DunalieIla acidophila—life at pH 1.0. In: Avron M, Ben-Amotz A (eds) Dunaliella: physiology, biochemistry and biotechnology. CRC, Boca Ratón, pp 99–134Google Scholar
  11. Goff LJ, Moon DA, Coleman AW (1994) Molecular delineation of species and species relationships in the red algal agarophytes Gracilariopsis and Gracilaria. J Phycol 30:521–537CrossRefGoogle Scholar
  12. Gomez PI, Gonzalez MA (2004) Genetic variation among seven strains of Dunaliella salina (Chlorophyta) with industrial potential, based on RAPD banding patterns and on nuclear ITS rDNA sequences. Aquaculture 233:149–162CrossRefGoogle Scholar
  13. González MA, Gómez PI, Montoya R (1999) Comparison of PCR-RFLP analysis of the ITS region with morphological criteria of various strains of Dunaliella. J Appl Phycol 10:573–580CrossRefGoogle Scholar
  14. González MA, Coleman AW, Gómez PI, Montoya R (2001) Phylogenetic relationship among various strains of Dunaliella (Chlorophyceae) based on nuclear ITS rDNA sequences. J Phycol 37:604–611CrossRefGoogle Scholar
  15. González MA, Gómez PI, Polle JEW (2009) Taxonomy and phylogeny of the genus Dunaliella. In: Ben-Amotz A, Polle JEW, Subba Rao DV (eds) The alga Dunaliella: biodiversity, physiology, genomics and biotechnology. Science Publishers, New Hampshire, pp 1–13Google Scholar
  16. Hall TA (1999) Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  17. Hejazi MA, Barzegari A, Gharajeh NH, Hejazi MS (2010) Introduction of a novel 18S rDNA gene arrangement along with distinct ITS region in the saline water microalga Dunaliella. Saline Syst 6:4PubMedCrossRefGoogle Scholar
  18. Kalina T (1965) Zur Morphologie und Taxonomie der Gattung Spermatozopsis Korschikow (Volvocales). Spermatozopsis acidophila sp n Preslia 37:9–12Google Scholar
  19. Kelchner SA (2000) The evolution of non-coding chloroplast DNA and its application in plant systematic. Ann Mo Bot Gard 87:482–498CrossRefGoogle Scholar
  20. Koetschan C, Förster F, Keller A, Schleicher T, Ruderisch B, Schwarz R, Müller T, Wolf M, Schultz J (2010) The ITS2 Database III—sequences and structures for phylogeny. Nucleic Acids Res 38:D275–D279PubMedCrossRefGoogle Scholar
  21. Larget B, Simon DL (1999) Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol Biol Evol 16:750–759CrossRefGoogle Scholar
  22. Massyuk NP (1971) New species of Dunaliella with asymmetrical cells. Ukr Bot Zh 28:148Google Scholar
  23. Massyuk NP (1972) Phylogenetic and taxonomy of the genus Dunaliella. Ukr Bo Zh 29:744–749Google Scholar
  24. Melkonian M, Preisig HR (1984) An ultrastructural comparison between Spermatopsis and Dunaliella (Chlorophyceae). Pl Syst Evol 164:31–46CrossRefGoogle Scholar
  25. Müller T, Rahmann S, Dandekar T, Wolf M (2004) Accurate and Robust phylogeny estimation based on profile distances: a study of the Chlorophyceae (Chlorophyta). BMC Evol Biol 4:20PubMedCrossRefGoogle Scholar
  26. Nozaki H, Ito M, Sano R, Uchida H, Watanabe MM, Takahashi H (1995) Phylogenetic relationships within the colonial Volvocales (Chlorophyta) inferred from rbcL gene sequence data. J Phycol 31:970–979CrossRefGoogle Scholar
  27. Nozaki H, Ito M, Sano R, Uchida H, Watanabe MM, Takahashi H, Kuroiwa T (1997) Phylogenetic analysis of Yamagishiella and Platydorina (Volvocaceae, Chlorophyta) based on rbcL gene sequences. J Phycol 33:272–278CrossRefGoogle Scholar
  28. Nozaki H, Misumi O, Kuroiwa T (2003) Phylogeny of the quadriflagellate Volvocales (Chlorophyceae) based on chloroplast multigene sequences. Mol Phylogenet Evol 29:58–66PubMedCrossRefGoogle Scholar
  29. Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Center, Uppsala UniversityGoogle Scholar
  30. Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Comp Appl Biosci 12:357–358PubMedGoogle Scholar
  31. Pick U (1999) Dunaliella acidophila—a most extreme acidophilic alga. In: Seckbach J (ed) Enigmatic microorganisms and life in extreme environments. Kluwer, Dordrecht, pp 465–478Google Scholar
  32. Polle JEW, Struwe L, Jin E (2008) Identification and characterization of a new strain of the unicellular green alga Dunaliella salina (Teod.) from Korea. J Microbiol Biotechnol 18:821–827PubMedGoogle Scholar
  33. Polle JEW, Tran D, Ben-Amotz A (2009) History, distribution and habitats of algae of the genus Dunaliella Teodoresco (Chlorophyceae). In: Ben-Amotz A, Polle JEW, Subba Rao DV (eds) The alga Dunaliella: biodiversity, physiology, genomics and biotechnology. Science Publishers, New Hampshire, pp 1–13Google Scholar
  34. Preisig HR (1992) Morphology and taxonomy. In: Avron M, Ben-Amotz A (eds) Dunaliella: Physiology, biochemistry and biotechnology. CRC, Boca Raton, pp 1–15Google Scholar
  35. Rahmann S, Müller T, Dandekar T, Wolf M (2006) Efficient and robust analysis of large phylogenetic datasets. In: Hsu H-H (ed) Advanced data mining technologies in bioinformatics. Idea Group, Inc., Hershey, PA, pp 104–117CrossRefGoogle Scholar
  36. Richlen ML, Barber PH (2005) A technique for the rapid extraction of microalgal DNA from single live and preserved cells. Mol Ecol Notes 5:688–691CrossRefGoogle Scholar
  37. Ronquist R, Huelsenbeck JP (2003) MrBayes v. 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  38. Schultz J, Wolf M (2009) ITS2 sequence–structure analysis in phylogenetics: a how-to manual for molecular systematics. Mol Phylogenet Evol 52:520–523PubMedCrossRefGoogle Scholar
  39. Schultz J, Müller T, Achtziger M, Seibel PN, Dandekar T, Wolf M (2006) The internal transcribed spacer 2 database—a web server for (not only) low level phylogenetic analyses. Nucleic Acids Res 34:W704–W707PubMedCrossRefGoogle Scholar
  40. Seibel PN, Müller T, Dandekar T, Schultz J, Wolf M (2006) 4SALE—a tool for synchronous RNA sequence and secondary structure alignment and editing. BMC Bioinform 7:498CrossRefGoogle Scholar
  41. Seibel PN, Müller T, Dandekar T, Wolf M (2008) Synchronous visual analysis and editing of RNA sequence and secondary structure alignments using 4SALE. BMC Res Notes 1:91PubMedCrossRefGoogle Scholar
  42. Selig C, Wolf M, Müller T, Dandekar T, Schultz J (2008) The ITS2 Database II: homology modelling RNA structure for molecular systematics. Nucleic Acids Res 36:D377–D380PubMedCrossRefGoogle Scholar
  43. Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4. Sinauer Associates, SunderlandGoogle Scholar
  44. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  45. Wolf M, Achtziger M, Schultz J, Dandekar T, Müller T (2005) Homology modeling revealed more than 20,000 rRNA internal transcribed spacer 2 (ITS2) secondary structures. RNA 11:1616–1623PubMedCrossRefGoogle Scholar
  46. Wolf M, Ruderisch B, Dandekar T, Müller T (2008) ProfdistS: (Profile-) distance based phylogeny on sequence–structure alignments. Bioinformatics 24:2401–2402PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Patrícia Assunção
    • 1
  • Ruth Jaén-Molina
    • 2
  • Juli Caujapé-Castells
    • 2
  • Adelina de la Jara
    • 1
  • Laura Carmona
    • 1
  • Karen Freijanes
    • 1
  • Héctor Mendoza
    • 1
  1. 1.Departamento de Biotecnología, División de Investigación y Desarrollo TecnológicoInstituto Tecnológico de Canarias (ITC)Sta. LucíaSpain
  2. 2.Departamento de Biodiversidad Molecular y Banco de ADN de la Flora CanariaJardín Botánico Canario “Viera y Clavijo”–Unidad Asociada CSICLas Palmas de Gran CanariaSpain

Personalised recommendations