Journal of Applied Phycology

, Volume 23, Issue 6, pp 1005–1016

Medium pH and nitrate concentration effects on accumulation of triacylglycerol in two members of the chlorophyta

  • Robert Gardner
  • Patrizia Peters
  • Brent Peyton
  • Keith E. Cooksey
Article

Abstract

Algal-derived biodiesel is of particular interest because of several factors including: the potential for a near-carbon-neutral life cycle, the prospective ability for algae to capture carbon dioxide generated from coal, and algae’s high per acre yield potential. Our group and others have shown that in nitrogen limitation, and for a single species of Chlorella, a rise in culture medium pH yields triacylglycerol (TAG) accumulation. To solidify and expand on these triggers, the influence and interaction of pH and nitrogen concentration on lipid production was further investigated on Chlorophyceae Scenedesmus sp. and Coelastrella sp. Growth was monitored optically and TAG accumulation was monitored by Nile red fluorescence and confirmed by gas chromatography. Both organisms grew in all treatments and TAG accumulation was observed by two distinct conditions: high pH and nitrogen limitation. The Scenedesmus sp. was shown to grow and produce lipids to a larger degree in alkaliphilic conditions (pH >9) and was used to further investigate the interplay between TAG accumulation from high pH and/or nitrate depletion. Results given here indicate that TAG accumulation per cell, monitored by Nile red fluorescence, correlates with pH at the time of nitrate depletion.

Keywords

Triacylglycerol (TAG) Fatty acid methyl ester (FAME) Nile red fluorescence Nile-red-specific fluorescence Chlorophyta 

References

  1. Banerjee A, Sharma R, Chisti Y (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22(3):245PubMedCrossRefGoogle Scholar
  2. Benemann J, Oswald W (1996) Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass. Final report (other information: PBD: 21 Mar 1996). pp. 214Google Scholar
  3. Bilgen S, Kaygusuz K, Sari A (2004) Renewable energy for a clean and sustainable future. Energy Sources 26(12):1119–1129CrossRefGoogle Scholar
  4. Bligh E, Dyer W (1959) A rapid method of lipid extraction and purification. Can J Biochem Physiol 37(8):911–917PubMedCrossRefGoogle Scholar
  5. Brown L (2006) Plan b: Rescuing a planet under stress and a civilization in trouble. W.W. Norton Publishing, LondonGoogle Scholar
  6. Cepák V, Přibyl P, Vítová M (2006) The effect of light color on the nucleocytoplasmic and chloroplast cycle of the green chlorococcal alga Scenedesmus obliquus. Folia Microbiol 51(4):342–348CrossRefGoogle Scholar
  7. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306PubMedCrossRefGoogle Scholar
  8. Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26(3):126–131PubMedCrossRefGoogle Scholar
  9. Cooksey K, Guckert J, Williams S, Callis P (1987) Fluorometric determination of the neutral lipid content of microalgal cells using Nile red. J Microbiol Meth 6(6):333–345CrossRefGoogle Scholar
  10. Cunningham J (2007) Biofuel joins the jet set. Prof Eng 20(10):32–32Google Scholar
  11. Dukes J (2003) Burning buried sunshine: human consumption of ancient solar energy. Climate Change 61(1):31–44CrossRefGoogle Scholar
  12. Elsey D, Jameson D, Raleigh B, Cooney M (2007) Fluorescent measurement of microalgal neutral lipids. J Microbiol Meth 68(3):639–642CrossRefGoogle Scholar
  13. Gouveia L, Oliveira A (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36(2):269–274PubMedCrossRefGoogle Scholar
  14. Greenwell H, Laurens L, Shields R, Lovitt R, Flynn K (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J Roy Soc Interface 7(46):703–726. doi:10.1098/rsif.2009.0322 CrossRefGoogle Scholar
  15. Griffiths M, Harrison S (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21(5):493–507CrossRefGoogle Scholar
  16. Guckert J, Cooksey K (1990) Triglyceride accumulation and fatty acid profile changes in Chlorella (Chlorophyta) during high pH-induced cell inhibition. J Phycol 26(1):72–79CrossRefGoogle Scholar
  17. Guckert J, Cooksey K, Jackson L (1988) Lipid sovent systems are not equivalent for analysis of lipid classes in the microeukaryotic green alga, Chlorella. J Microbiol Meth 8(3):139–149CrossRefGoogle Scholar
  18. Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA 103(30):11206–11210PubMedCrossRefGoogle Scholar
  19. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M et al (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54(4):621–639PubMedCrossRefGoogle Scholar
  20. Khlebovich V, Degtyarev A (2005) Mechanism of defensive morph formation in Scenedesmus acutus (Chlorophycea, Scenedesmaceae). Dokl Biol Sci 403(1–6):303–305PubMedCrossRefGoogle Scholar
  21. Lardon L, HeÌlias A, Sialve B, Steyer J-P, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43(17):6475–6481PubMedCrossRefGoogle Scholar
  22. Lee S, Yoon B-D, Oh H-M (1998) Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnol Tech 12(7):553–556CrossRefGoogle Scholar
  23. Lee J-Y, Yoo C, Jun S-Y, Ahn C-Y, Oh H-M (2010) Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol 10(1, Supplement 1):S75–S77CrossRefGoogle Scholar
  24. Li Y, Horsman M, Wang B, Wu N, Lan C (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81(4):629–636PubMedCrossRefGoogle Scholar
  25. Makulla A (2000) Fatty acid composition of Scenedesmus obliquus: correlation to dilution rates. Limnologica 30(2):162–168CrossRefGoogle Scholar
  26. Mandal S, Mallick N (2009) Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl Microbiol Biotechnol 84(2):281–291PubMedCrossRefGoogle Scholar
  27. Nichols H, Bold H (1965) Trichosarcina polymorpha gen. et sp. nov. J Phycol 1(1):34–38CrossRefGoogle Scholar
  28. Pickett-Heaps J, Staehelin L (1975) The ultrastructure of Scenedesmus (Chlorophyceae). II. Cell division and colony formation. J Phycol 11:186–202Google Scholar
  29. Schenk P, Thomas-Hall S, Stephens E, Marx U, Mussgnug J, Posten C et al (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Res 1(1):20–43CrossRefGoogle Scholar
  30. SERI (1986) Microalgae culture collection 1985–1986 (M. T. R. Group, Trans.). Solar Energy Research Institute, Golden, p 100Google Scholar
  31. Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the United States Department of Energy’s aquatic species program—biodiesel from algae. National Renewable Energy Laboratory, Golden, p 328CrossRefGoogle Scholar
  32. Shen Y, Pei Z, Yuan W, Mao E (2009) Effect of nitrogen and extraction method on algae lipid yield. Int J Agric Biol Eng 2(1):51–57Google Scholar
  33. Shen Y, Yuan W, Pei Z, Mao E (2010) Heterotrophic culture of chlorella protothecoides in various nitrogen sources for lipid production. Appl Biochem Biotechnol 160(6):1674–1684PubMedCrossRefGoogle Scholar
  34. Shifrin NS, Chisholm SW (1981) Phytoplankton lipids: interspecific differences and effects of nitrate, silicate, and light-dark cycles. J Phycol 17:374–384CrossRefGoogle Scholar
  35. Stephenson A, Dennis J, Howe C, Scott S, Smith A (2010) Influence of nitrogen-limitation regime on the production by Chlorella vulgaris of lipids for biodiesel feedstocks. Biofuels 1:47–58CrossRefGoogle Scholar
  36. Stumm W, Morgan J (1996) Aquatic chemistry, 3rd edn. Wiley, New YorkGoogle Scholar
  37. Thielmann J, Tolbert NE, Goyal A, Senger H (1990) Two systems for concentrating CO2 and bicarbonate during photosynthesis by Scenedesmus. Plant Physiol 92:622–629PubMedCrossRefGoogle Scholar
  38. Trainor F, Cain J, Shubert L (1976) Morphology and nutrition of the colonial green alga Scenedesmus: 80 years later. Bot Rev 42(1):5–25CrossRefGoogle Scholar
  39. Wiltshire K, Boersma M, Möller A, Buhtz H (2000) Extraction of pigments and fatty acids from the green alga Scenedesmus obliquus (Chlorophyceae). Aquat Ecol 34(2):119–126CrossRefGoogle Scholar
  40. Yang Y, Gao K (2003) Effects of CO2 concentrations on the freshwater microalgae, Chlamydomonas reinhardtii, Chlorella pyrenoidosa and Scenedesmus obliquus (Chlorophyta). J Appl Phycol 15(5):379–389CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Robert Gardner
    • 1
  • Patrizia Peters
    • 2
  • Brent Peyton
    • 1
  • Keith E. Cooksey
    • 2
  1. 1.Department of Chemical and Biological EngineeringMontana State UniversityBozemanUSA
  2. 2.Department of MicrobiologyMontana State UniversityBozemanUSA

Personalised recommendations