Advertisement

Journal of Applied Phycology

, Volume 23, Issue 6, pp 995–1003 | Cite as

Cloning and expression of isoenzymes of superoxide dismutase in Haematococcus pluvialis (Chlorophyceae) under oxidative stress

  • Jiangxin Wang
  • Milton Sommerfeld
  • Qiang HuEmail author
Article

Abstract

Increasing evidence indicates that the biosynthesis and accumulation of the keto-carotenoid astaxanthin represents a chronic (in days or weeks) molecular defense mechanism in the green alga, Haematococcus pluvialis, to protect cells from abiotic stress. However, information with regard to the acute (in minutes or hours) response of the cells to stress is scarce. In this study, two cDNAs encoding manganese superoxide dismutase (MnSOD) were cloned and their full length nucleotide sequences were obtained. Quantitative real-time RT-PCR analysis revealed a general increase in MnSOD transcriptions in response to various abiotic stressors, e.g., high light, excessive amounts of iron or sodium acetate, either singly or in combination. Meanwhile, four isoforms of MnSOD were detected by a nondenaturing polyacrylamide gel electrophoresis approach. In addition, an iron-containing superoxide dismutase (FeSOD) was detected in the cells using the same technique. Differential expressions of SOD isoenzymes under different abiotic stressors were also investigated and discussed, at both mRNA and protein levels.

Keywords

Superoxide dismutase Oxidative stress Haematococcus pluvialis Gene expression Molecular cloning 

References

  1. Alscher RG, Erturk N, Lenwood SH (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341PubMedCrossRefGoogle Scholar
  2. Armbrust E, Berges J, Bowler C, Green B, Martinez D, Putnam H, Zhou S, Allen E, Apt E, Bechner M, Brzezinski M, Chaal B, Chiovitti A, Davis A, Demarest M, Detter J, Glavina T, Goodstein D, Hadi M, Hellsten U, Hildebrand M, Jenkins B, Jurka J, Kapitonov V, Kröger N, Lau W, Lane T, Larimer F, Lippmeier J, Lucas S, Medina M, Montsant A, Obornik M, Parker M, Palenik B, Pazour G, Richardson P, Rynearson T, Saito M, Schwartz D, Thamatrakoln K, Valentin K, Vardi A, Wilkerson F, Rokhsa D (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86PubMedCrossRefGoogle Scholar
  3. Asada K (1994) Production and action of active oxygen species in photosynthetic tissues. In: Foyer C, Mullineaux P (eds) Photooxidative Stresses in Plants: Causes and Amelioration. CRC Press, Boca Raton, pp 77–104Google Scholar
  4. Asada K, Yoshikawa K, Takahashi M, Maeda Y, Enmanji K (1975) Superoxide dismutases from a blue-green alga, Plectonema boryanum. J Biol Chem 250:2801–7PubMedGoogle Scholar
  5. Asada K, Kanematsu S, Uchida K (1977) Superoxide dismutases in photosynthetic organisms: absence of the cuprozinc enzyme in eukaryotic algae. Arch Biochem Biophys 179:243–256PubMedCrossRefGoogle Scholar
  6. Beauchamp C, Fridovich I (1971) Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287PubMedCrossRefGoogle Scholar
  7. Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–94PubMedCrossRefGoogle Scholar
  8. Boussiba S (2000) Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol Plant 108:111–117CrossRefGoogle Scholar
  9. Boussiba S, Wang B, Yuan JP, Zarka A, Chen F (1999) Changes in pigments profile in the green alga Haematococcus pluvialis exposed to environmental stresses. Biotechnol Lett 21:601–604CrossRefGoogle Scholar
  10. Bowler C, Camp W, Vanmontagu M, Inze D (1994) Superoxide-dismutase in plants. CRC Crit Rev Plant Sci 13:199–218Google Scholar
  11. Buchanan BB, Luan S (2005) Redox regulation in the chloroplast thylakoid lumen: a new frontier in photosynthesis research. J Exp Bot 56:1439–1447PubMedCrossRefGoogle Scholar
  12. Church S (1990) Manganese superoxide dismutase: nucleotide and deduced amino acid sequence of a cDNA encoding a new human transcript. Biochim Biophys Acta 1087:250–252PubMedGoogle Scholar
  13. Elstner EF, Heupel A (1976) Inhibition of nitrite formation from hydroxylammonium chloride: a simple assay for superoxide dismutase. Anal Biochem 70:616–620PubMedCrossRefGoogle Scholar
  14. Erturk HN (1999) Responses of superoxide dismutases to oxidative stress in Arabidopsis thaliana. In: Biology. Virginia Polytechnic Institute and State University, Blacksburg, VA, p 179Google Scholar
  15. Fridovich I (1975) Superoxide dismutases. Annu Rev Biochem 44:147–159PubMedCrossRefGoogle Scholar
  16. Fridovich I (1986) Biological effects of the superoxide radical. Arch Biochem Biophys 247:1–11PubMedCrossRefGoogle Scholar
  17. Gabriel O (1971) Locating enzymes on gels. In: Colowick SP, Kaplan NO (eds) Methods in Enzymology, vol 22. Academic, New York, p 578Google Scholar
  18. Geigenberger P, Kolbe A, Tiessn A (2005) Redox regulation of carbon storage and partitioning in response to light and sugars. J Exp Bot 56:1469–1479PubMedCrossRefGoogle Scholar
  19. Grun S, Lindermayr C, Sell S (2006) Nitric oxide and gene regulation in plants. J Exp Bot 57:507–516PubMedCrossRefGoogle Scholar
  20. Hagen C, Braune W, Vogel K, Hader DP (1993) Functional aspects of secondary carotenoids in Haematococcus lacustris (Girod) Rostafinski (Volvocales) V. Influences on photomovement. Plant Cell Environ 16:991–995CrossRefGoogle Scholar
  21. Ho Y, Howard A, Crapo J (1991) Molecular structure of a functional rat gene for manganese-containing superoxide dismutase. Am J Respir Cell Mol Biol 4:278–286PubMedGoogle Scholar
  22. Kaminaka H, Morita S, Tokumoto M, Yokoyama H, Masumura T, Tanaka K (1999) Molecular cloning and characterization of a cDNA for an iron-superoxide dismutase in rice (Oryza sativa L.). Biosci Biotech Biochem 63:302–308CrossRefGoogle Scholar
  23. Kanematsu S, Asada K (1990) Characteristic amino acid sequences of chloroplast and cytosol isozymes of CuZn-superoxide dismutase in spinach, rice and horsetail. Plant Cell Physiol 31:99–112Google Scholar
  24. Karpinski S, Escobar C, Karpinska B, Creissen G, Mullineaux PM (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell 9:627–640PubMedCrossRefGoogle Scholar
  25. Kitayama K (1994) Molecular analysis of photooxidative stress responses in Chlamydomonas reinhardtii. Thesis, Indiana University, BloomingtonGoogle Scholar
  26. Kliebenstein DJ, Monde RA, Last RL (1998) Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization. Plant Physiol 118:637–650PubMedCrossRefGoogle Scholar
  27. Kobayashi M, Kakizono T, Nagai S (1991) Astaxanthin production by a green-alga, Haematococcus pluvialis accompanied with morphological-changes in acetate media. J Ferment Bioeng 71:335–339CrossRefGoogle Scholar
  28. Kobayashi M, Kakizono T, Nishio N, Nagai S, Kurimura Y, Tsuji Y (1997) Antioxidant role of astaxanthin in the green alga Haematococcus pluvialis. Appl Microbiol Biotechnol 48:351–356CrossRefGoogle Scholar
  29. Kwon SJ, Choi EY, Choi YJ (2006) Proteomics studies of post-translational modifications in plants. J Exp Bot 57:1547–1551PubMedCrossRefGoogle Scholar
  30. Li YT, Sommerfeld M, Chen F, Hu Q (2008) Consumption of oxygen by astaxanthin biosynthesis: a protective mechanism against oxidative stress in Haematococcus pluvialis (Chlorophyceae). J Plant Physiol 165:1783–1797PubMedCrossRefGoogle Scholar
  31. Lu F, Vonshak A, Zarka A, Boussiba S (1998) Does astaxanthin protect Haematococcus against light damage? Z Naturforsch 53c:93–100Google Scholar
  32. Matsuzaki M, Misumi O, Shin-I T, Maruyama S, Takahara M, Miyagishima SY, Mori T, Nishida K, Yagisawa F, Nishida K, Yoshida Y, Nishimura Y, Nakao S, Kobayashi T, Momoyama Y, Higashiyama T, Minoda A, Sano M, Nomoto H, Oishi K, Hayashi H, Ohta F, Nishizaka S, Haga S, Miura S, Morishita T, Kabeya Y, Terasawa K, Suzuki Y, Ishii Y, Asakawa S, Takano H, Ohta N, Kuroiwa H, Tanaka K, Shimizu N, Sugano S, Sato N, Nozaki H, Ogasawara N, Kohara Y, Kuroiwa T (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657PubMedCrossRefGoogle Scholar
  33. McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055PubMedGoogle Scholar
  34. Mur LAJ, Tim L, Carver W (2006) No way to live: The various roles of nitric oxide in plant-pathogen interactions. J Exp Bot 57:489–505PubMedCrossRefGoogle Scholar
  35. Parker M, Blake C, Barra D, Bossa F, Schinina M, Bannister W, Bannister J (1987) Structural identity between the iron- and manganese-containing superoxide dismutases. Protein Eng 1:393–397PubMedCrossRefGoogle Scholar
  36. Perl-Treves R, Perl A (2002) Oxidative stress: an introduction. In: Van Montagu M, Inzé D (eds) Oxidative stress in plants. Taylor & Francis, London, pp 1–32Google Scholar
  37. Sakamoto A, Nosaka Y, Tanaka K (1993) Cloning and sequencing analysis of a complementary DNA for manganese-superoxide dismutase from rice (Oryza sativa L.). Plant Physiol 103:1477–1478PubMedCrossRefGoogle Scholar
  38. Sakurai H, Kusumoto N, Kitayama K, Robert TK (1993) Isozymes of superoxide dismutase in Chlamydomonas and purification of one of the major isozymes containing Fe. Plant Cell Physiol 34:1133–1137Google Scholar
  39. Shaish A, Avron M, Pick U, Ben-Amotz A (1993) Are active oxygen species involved in induction of β-carotene in Dunaliella bardawil? Planta 190:363–8CrossRefGoogle Scholar
  40. Steinbrenner J, Linden H (2001) Regulation of two carotenoid biosynthesis genes coding for phytoene synthase and carotenoid hydroxylase during stress-induced astaxanthin formation in the green alga Haematococcus pluvialis. Plant Physiol 125:810–817PubMedCrossRefGoogle Scholar
  41. Steinbrenner J, Linden H (2003) Light induction of carotenoid biosynthesis genes in the green alga Haematococcus pluvialis: regulation by photosynthetic redox control. Plant Mol Biol 52:343–56PubMedCrossRefGoogle Scholar
  42. Tsang EW, Bowler C, Hérouart D, Van Camp W, Villarroel R, Genetello C, Van Montagu M, Inzé D (1991) Differential regulation of superoxide dismutases in plants exposed to environmental stress. Plant Cell 3:783–92PubMedCrossRefGoogle Scholar
  43. Ukeda H, Sarker AK, Kawana D, Sawamura M (1999) Flow-injection assay of superoxide dismutase based on the reduction of highly water-soluble tetrazolium. Anal Sci 15:353–357CrossRefGoogle Scholar
  44. Wang JX, Shi ZX, Xu XD (2004a) Residual plastids of bleached mutants of Euglena gracilis and their effects on the expression of nucleus-encoded genes. Prog Nat Sci 14:213–217CrossRefGoogle Scholar
  45. Wang JX, Sommerfeld M, Hu Q (2009) Occurrence and environmental stress responses of two plastid terminal oxidases in Haematococcus pluvialis (Chlorophyceae). Planta 230:191–203PubMedCrossRefGoogle Scholar
  46. Wang JX, Zhang XZ, Chen YS, Sommerfeld M, Hu Q (2008) Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii. Chemosphere 73:1121–1128PubMedCrossRefGoogle Scholar
  47. Wang S, Chen F, Sommerfeld M, Hu Q (2004b) Proteomic analysis of molecular response to oxidative stress by the green alga Haematococcus pluvialis (Chlorophyceae). Planta 220:17–29PubMedCrossRefGoogle Scholar
  48. Wuerges J, Lee J, Yim Y, Yim H, Kang S, Carugo K (2004) Crystal structure of nickel-containing superoxide dismutase reveals another type of active site. Proc Natl Acad Sci USA 101:8569–8574PubMedCrossRefGoogle Scholar
  49. Youn HD, Kim E, Roe J, Hah Y, Kang S (1996) A novel nickel-containing superoxide dismutase from Streptomyces spp. Biochem J 318:889–896PubMedGoogle Scholar
  50. Zhekisheva M, Boussiba S, Khozin-Goldberg I, Zarka A, Cohen Z (2002) Accumulation of oleic acid in Haematococcus pluvialis (Chlorophyceae) under nitrogen starvation or high light is correlated with that of astaxanthin esters. J Phycol 38:325–331CrossRefGoogle Scholar
  51. Zhu D, Scandalios J (1993) Maize mitochondrial manganese superoxide dismutases are encoded by a differentially expressed multigene family. Proc Natl Acad Sci USA 90:9310–9314PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Applied Sciences and MathematicsArizona State UniversityMesaUSA
  2. 2.Center for Infectious Diseases and Vaccinology, The Biodesign InstituteArizona State UniversityTempeUSA
  3. 3.Department of Applied Sciences and MathematicsArizona State UniversityMesaUSA

Personalised recommendations