Journal of Applied Phycology

, Volume 23, Issue 6, pp 1053–1057 | Cite as

Isolation of high-lipid content strains of the marine microalga Tetraselmis suecica for biodiesel production by flow cytometry and single-cell sorting

  • María F. MonteroEmail author
  • Manuela Aristizábal
  • Guillermo García Reina


Biodiesel from algae is considered an alternative for a third generation of biofuels. However, most microalgae are not lipogenic during fast growth periods, but high-lipid content occurs at resting stages. Microalgae biomass production for biodiesel needs continuous high volumetric and aerial yields and large amount of neutral lipid in the biomass. These requirements are similar to demanding a marathon runner to be obese. We show that by using cell sorting capabilities of flow cytometers, in combination with the lipid-soluble fluorescent dye Nile Red, we can isolate and select cells with a high and stable lipid content. In our study, we were able to select the equivalent of a stable “fat marathon runner” through three sorting events obtained from wild populations of Tetraselmis suecica.


Cytometry Fluorescence-activated cell sorting (FACS) Nile Red (NR) Neutral lipids Tetraselmis suecica 



This work has been supported by the “Consorcio Estratégico Nacional de Investigación Técnica” (CENIT)—“Proyecto de Investigación para el Impulso del Biodiesel en España” (PIIBE), of the Spanish Government (coordinated by Repsol-YPF). We would like to thank Dr J.L. Gómez-Pinchetti for his thoughtful comments and advice during the development of this study.


  1. Chen W, Zhang C, Song L, Sommerfeld M, Hu Q (2009) A high throughput Nile Red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Meth 77:41–47CrossRefGoogle Scholar
  2. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306PubMedCrossRefGoogle Scholar
  3. Chini Zitelli G, Rodolfi L, Biondi N, Tredici MR (2006) Productivity and photosynthetic efficiency of outdoor cultures of Tetraselmis suecica in annular columns. Aquaculture 261:932–943CrossRefGoogle Scholar
  4. Coder DM (1997) Assessment of cell viability. In: Robinson PJ, Darzynkiewics Z, Dobrucki J et al (eds) Current protocols in cytometry. Wiley, Somerset, pp 9.2.1–9.2.14Google Scholar
  5. Comas J, Vives-Rego J (1997) Assesment the effects of gramicidin, formaldehyde and surfactants on Escherichia coli by flow cytometry using nucleic acid and membrane potential dyes. Cytometry 29:58–64PubMedCrossRefGoogle Scholar
  6. Cooksey KE, Guckert JB, Williams SA, Callis PR (1987) Fluorometric determination of the neutral lipid-content of microalgal cells using Nile Red. J Microbiol Meth 6:333–345CrossRefGoogle Scholar
  7. de la Jara A, Mendoza H, Martel A, Molina C, Nordstro L, de la Rosa V, Díaz R (2003) Flow cytometric determination of lipid content in a marine dinoflagellate Cryptecodinium cohnii. J Appl Phycol 15:433–438CrossRefGoogle Scholar
  8. Dismukes C, Carrieri D, Bennette N, Ananyev GM, Posewitz MC (2008) Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr Opin Biotechnol 19:235–240PubMedCrossRefGoogle Scholar
  9. Elsey D, Jameson D, Raleigh B, Cooney MJ (2007) Fluorescent measurement of microalgal neutral lipids. J Microbiol Meth 68:639–642CrossRefGoogle Scholar
  10. Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507CrossRefGoogle Scholar
  11. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639PubMedCrossRefGoogle Scholar
  12. Lopes da Silva T, Amarelo Santos C, Reis A (2009) Multi-parameter flow cytometry as tool to monitor heterotrophic microalgal batch fermentations for oil production towards biodiesel. Biotechnol Bioprocess Eng 14:330–337CrossRefGoogle Scholar
  13. McGinnis KM, Dempster TA, Sommerfeld MR (1997) Characterization of the growth and lipid content of the diatom Chaetoceros muelleri. J Appl Phycol 9:19–24CrossRefGoogle Scholar
  14. Mendoza-Guzmán H, de la Jara A, Carmona-Duarte L, Freijanes-Presmanes K (2009) Estimate by means of flow cytometry of variation in composition of fatty acids from Tetraselmis suecica in response to culture conditions. Aquacult Int 18:189–199CrossRefGoogle Scholar
  15. Pultz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–297CrossRefGoogle Scholar
  16. Resina-Pelfort O, Comas-Riu J, Vives-Rego J (2001) Effect of deflected droplet electrostatic cell sorting on the viability and exoproteolytic activity of bacterial cultures and marine bacterioplankton. Syst Appl Microbiol 24:31–36PubMedCrossRefGoogle Scholar
  17. Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2008) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112CrossRefGoogle Scholar
  18. Sensen CW, Heimann K, Melkonian M (1993) The production of clonal and axenic cultures of microalgae using fluorescence-activated cell sorting. Europ J Phycol 28:93–97CrossRefGoogle Scholar
  19. Williams PJLEB (2007) Biofuel: microalgae cut the social and ecological costs. Nature 450:478PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • María F. Montero
    • 1
    Email author
  • Manuela Aristizábal
    • 1
  • Guillermo García Reina
    • 1
  1. 1.Centro de Biotecnología Marina, Muelle de Taliarte s/nUniversidad de Las Palmas de Gran CanariaTeldeSpain

Personalised recommendations