Journal of Applied Phycology

, Volume 23, Issue 5, pp 877–886 | Cite as

Using marine macroalgae for carbon sequestration: a critical appraisal

  • Ik Kyo Chung
  • John Beardall
  • Smita Mehta
  • Dinabandhu Sahoo
  • Slobodanka Stojkovic


There has been a good deal of interest in the potential of marine vegetation as a sink for anthropogenic C emissions (“Blue Carbon”). Marine primary producers contribute at least 50% of the world’s carbon fixation and may account for as much as 71% of all carbon storage. In this paper, we analyse the current rate of harvesting of both commercially grown and wild-grown macroalgae, as well as their capacity for photosynthetically driven CO2 assimilation and growth. We suggest that CO2 acquisition by marine macroalgae can represent a considerable sink for anthropogenic CO2 emissions and that harvesting and appropriate use of macroalgal primary production could play a significant role in C sequestration and amelioration of greenhouse gas emissions.


Blue carbon Macroalgae Photosynthesis CO2 sequestration 



This review is the first activity of the WG-Asian Network of the Asian Pacific Phycological Association and has been supported by a grant ‘Greenhouse Gas Emissions Reduction Using Seaweeds’ Project funded by the Korean Ministry of Land, Transport and Maritime Affairs.


  1. Atkinson MJ, Smith SV (1983) C:N:P ratios of benthic marine plants. Limnol Oceanogr 28:568–574CrossRefGoogle Scholar
  2. Barry JP, Baxter CH, Sagarin RD, Gilman SE SE (1995) Climate-related, long term faunal changes in a California rocky intertidal community. Science 267:672–675PubMedCrossRefGoogle Scholar
  3. Beardall J, Raven JA (2004) The potential effects of global climate change on microalgal photosynthesis, growth and ecology. Phycologia 43:26–40CrossRefGoogle Scholar
  4. Beardall J, Roberts S (1999) Inorganic carbon acquisition by two Antarctic macroalgae, Porphyra endiviifolium (Rhodophyta: Bangiales) and Palmaria decipiens (Rhodophyta: Palmariales). Polar Biol 21:310–315CrossRefGoogle Scholar
  5. Beardall J, Beer S, Raven JA (1998) Biodiversity of marine plants in an era of climate change: some predictions on the basis of physiological performance. Bot Mar 41:113–123CrossRefGoogle Scholar
  6. Behrenfeld MJ, Esaias WE, Turpie KR (2002) Assessment of primary production at the global scale. In: Williams PJ leB, Thomas DN, Reynolds CS (eds) Phytoplankton Productivity. Carbon assimilation in marine and freshwater ecosystems. Blackwell, Oxford, pp 156–186Google Scholar
  7. Bergman KC, Svensson S, Ohman MC (2001) Influence of algal farming on fish assemblages. Mar Pollut Bull 42:1379–1389PubMedCrossRefGoogle Scholar
  8. Breeman AM (1990) Expected effects of changing seawater temperatures on the geographic distribution of seaweed species. In: Beukema JJ, Wolff WJ, Brouns JJWM (eds) Expected effects of climate change on marine coastal ecosystems. Kluwer, pp 69–76Google Scholar
  9. Brinkhuis BH (1977) Seasonal variations in salt-marsh macroalgae photosynthesis. I. Ascophyllum nodosum ecad scorpioides. Mar Biol 44:165–175CrossRefGoogle Scholar
  10. Brown DL, Tregunna EB (1967) Inhibition of respiration during photosynthesis by some algae. Can J Bot 45:1135–1143CrossRefGoogle Scholar
  11. Chopin T, Buschmann AH, Halling C, Troell M, Kautsky N, Neori A, Kraemer GP, Zertuche-Gonzalez JA, Yarish C, Neefus C (2001) Integrating seaweeds into marine aquaculture systems: a key toward sustainability. J Phycol 37:975–986CrossRefGoogle Scholar
  12. Critcheley AT, Ohno M. (1998) Seaweed resources of the world. Japan International Cooperation Agency. p 431Google Scholar
  13. Dalgaard T, Jørgensen U, Olesen JE, Jensen ES, Kristensen ES, Connor D, Mínguez I, Deluca TH, Koonin SE (2006) Looking at biofuels and bioenergy. Science 312:1743–1744PubMedCrossRefGoogle Scholar
  14. Davis SC, Anderson-Teixeira KJ, DeLucia EH (2009) Life-cycle analysis and the ecology of biofuels. Trends Plant Sci 14:140–146PubMedCrossRefGoogle Scholar
  15. Dayton PK, Tegner MJ (1984) Catastrophic storms, El Niño, and patch stability in a Southern California kelp community. Science 224:283–285PubMedCrossRefGoogle Scholar
  16. Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds.) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  17. Diaz-Pulido G, McCook LJ, Larkum AWD, Lotze HK, Raven JA, Schaffelke B, Smith JE, Steneck RS (2007) Vulnerability of macroalgae of the Great Barrier Reef to climate change. In: Marshall P, Johnson J (eds) Climate change and the Great Barrier Reef. Great Barrier Reef Marine Park Authority, Townsville, pp 153–192Google Scholar
  18. Dring MJ (1982) The biology of marine plants. Cambridge University PressGoogle Scholar
  19. Einar R, Beer S (1993) Photosynthesis in air and in water of Acanthophora najadiformis growing within a narrow zone of the intertidal. Mar Biol 117:133–138CrossRefGoogle Scholar
  20. FAO (2003) Guide to the seaweed industry (A). FAO Fisheries Technical Paper No. 441 Rome, p 116Google Scholar
  21. Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238PubMedCrossRefGoogle Scholar
  22. Fernandez C, Gutierrez LM, Rico JM (1990) Ecology of Sargassum muticum on the north coast of Spain. Preliminary observations. Bot Mar 33:423–428CrossRefGoogle Scholar
  23. Fleurence J, Gutbier G, Mabeau S, Leray C (1994) Fatty acids from 11 marine algae of the French Brittany coast. J Appl Phycol 6:527–532CrossRefGoogle Scholar
  24. Gao K, McKinley KR (1994) Use of macroalgae for marine biomass production and CO2 remediation: a review. J Appl Phycol 6:45–60CrossRefGoogle Scholar
  25. Gao K, Nakahara H (1990) Effects of nutrients on the photosynthesis of Sargassum thunbergia. Bot Mar 33:375–383CrossRefGoogle Scholar
  26. Gao K, Umezaki I (1989a) Comparative studies of photosynthesis in different parts of Sargassum thunbergii. Jpn J Phycol 37:7–16Google Scholar
  27. Gao K, Umezaki I (1989b) Studies on diurnal photosynthetic performance of Sargassum thunbergii I. Changes in photosynthesis under natural sunlight. Jpn J Phycol 37:89–98Google Scholar
  28. Gao K, Umezaki I (1989c) Studies on diurnal photosynthetic performance of Sargassum thunbergii II. Explanation of diurnal photosynthesis patterns from examinations in the laboratory. Jpn J Phycol 37:99–104Google Scholar
  29. Gao K, Zheng Y (2010) Combined effects of ocean acidification and solar UV radiation on photosynthesis, growth, pigmentation and calcification of the coralline alga Corallina sessilis (Rhodophyta). Global Change Biology 16:2388–2398CrossRefGoogle Scholar
  30. Gao K, Aruga Y, Asada K, Ishihara T, Akano T, Kiyohara M (1991) Enhanced growth of the red alga Porphyra yezoensis Ueda in high CO2 concentrations. J Appl Phycol 3:355–362Google Scholar
  31. Gao K, Aruga Y, Asada K, Ishihara T, Akano T, Kiyohara M (1993a) Calcification in the articulated coralline alga Corallina pilulifera, with special reference to the effect of elevated CO2. Mar Biol 117:129–132CrossRefGoogle Scholar
  32. Gao K, Aruga Y, Asada K, Kiyohara M (1993b) Influence of enhanced CO2 on growth and photosynthesis of the red algae Gracilaria sp. and G. chilensis. J Appl Phycol 5:563–571CrossRefGoogle Scholar
  33. Hanisak MD, Littler MM, Littler DS (1988) Significance of macroalgal polymorphism: intraspecific tests of the functional- form model. Mar Biol 99:157–165CrossRefGoogle Scholar
  34. Heaton EA, Dohleman FG, Long SP (2008) Meeting US biofuel goals with less land: the potential of Miscanthus. Global Change Biology 14:2000–2014CrossRefGoogle Scholar
  35. Herbert SK, Waaland JR (1988) Photoinhibition of photosynthesis in a sun and a shade species of the red algal genus Porphyra. Mar Biol 97:1–7CrossRefGoogle Scholar
  36. Israel A, Hophy M (2002) Growth, photosynthetic properties and Rubisco activities and amounts of marine macro algae grown under current and elevated seawater CO2 concentrations. Global Change Biology 8:831–840CrossRefGoogle Scholar
  37. Israel A, Katz S, Dubinsky Z, Merrill JE, Friedlander M (1999) Photosynthetic inorganic carbon utilization and growth of Porphyra linearis (Rhodophyta). J Appl Phycol 11:447–453CrossRefGoogle Scholar
  38. Jackson GA (1987) Modelling the growth and harvest yield of the giant kelp Macrocystis pyrifera. Mar Biol 95:611–624CrossRefGoogle Scholar
  39. Johnston AM, Maberly SC, Raven JA (1992) The acquisition of inorganic carbon by four red macroalgae from different habitats. Oecologia 92:317–326CrossRefGoogle Scholar
  40. Jordan N, Boody G, Broussard W, Glover JD, Keeney D, McCown BH, McIsaac G, Muller M, Murray H, Neal J, Pansing C, Turner RE, Warner K, Wyse D (2007) Sustainable development of the agricultural bio-economy. Science 316:1570–1571PubMedCrossRefGoogle Scholar
  41. Koh LP (2007) Can palm oil plantations be made more hospitable for forest butterflies and birds? J Appl Ecol 44:703–713CrossRefGoogle Scholar
  42. Kremer BP (1981) Carbon metabolism. In: Lobban CS, Wynne MJ (eds) The biology of seaweeds. Botanical Monographs Vol. 17., pp 493–533Google Scholar
  43. Lapointe BE (1986) Phosphorus-limited photosynthesis and growth of Sargassum natans and Sargassum fluitans (Phaeophyceae) in the western North Atlantic. Deep-Sea Res 33:391–399CrossRefGoogle Scholar
  44. Lapointe BE, Tenore KR (1981) Experimental outdoor studies with Ulva fasciata Delile. 1. Interaction of light and nitrogen on nutrient uptake, growth, and biochemical composition. J Exp Mar Biol Ecol 53:135–152CrossRefGoogle Scholar
  45. Leigh EG, Paine RT, Quinn JF, Suchanek TH (1987) Wave energy and intertidal productivity. Proc Natl Acad Sci USA 84:1314–1318PubMedCrossRefGoogle Scholar
  46. Levavasseur G, Edwards GE, Osmond CB, Ramus J (1991) Inorganic carbon limitation of photosynthesis in Ulva rotundata (Chlorophyta). J Phycol 27:667–672CrossRefGoogle Scholar
  47. Littler MN, Murray SN (1974) The primary productivity of marine macrophytes from a rocky intertidal community. Mar Biol 27:131–135Google Scholar
  48. Maegawa M (1980) Measurements of photosynthesis and productivity of the cultivated Monostroma population. La Mer 18:116–124Google Scholar
  49. Maegawa M, Aruga Y (1983) Photosynthesis and productivity of the cultivated Monostroma latissimum population. La Mer 21:164–172Google Scholar
  50. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM,. Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB Tignor M, Miller HL (eds.) Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  51. Mercado JM, Javier F, Gordillo L, Figueroa FL, Niell FX (1998) External carbonic anhydrase and affinity for inorganic carbon in intertidal macroalgae. J Exp Mar Biol Ecol 221:209–220CrossRefGoogle Scholar
  52. Middelboe AL, Hansen PJ (2007) Direct effects of pH and inorganic carbon on macroalgal photosynthesis and growth. Mar Biol Res 3:134–144CrossRefGoogle Scholar
  53. Moen E, Horn S, Østgaard K (1997) Biological degradation of Ascophyllum nodosum. J Appl Phycol 9: 347–357.Google Scholar
  54. Morand P, Carpentier B, Charlier RH, Maz’e J, Orlandini M, Plunkett BA, de Wart J (1991) Bioconversion of seaweeds. In: Guiry MD, Blunden G (eds) Seaweed resources of Europe: uses and potential. Wiley, Chichester, pp 95–148Google Scholar
  55. Muraoka D (2004) Seaweed resources as a source of carbon fixation. Bull Fish Res Agen Supplement 1:59–63Google Scholar
  56. Nellemann C, Corcoran E, Duarte CM, Valdés L, De Young C, Fonseca L, Grimsditch G (2009) Blue carbon. A rapid response assessment. United Nations Environment Programme, GRID-Arendal,
  57. Neori A, Chopin T, Troell M, Buschmann AH, Kraemer GP, Halling C, Shpigel M, Yarish C (2004) Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture 231:361–391CrossRefGoogle Scholar
  58. Nielsen KJ (2003) Nutrient loading and consumers: agents of change in open-coast macrophyte assemblages. Proc Natl Acad Sci USA 13:7660–7665CrossRefGoogle Scholar
  59. Pakker H, Breeman AM (1996) Temperature responses of tropical to warm temperate seaweeds. II Evidence for ecotypic differentiation in amphi-Atlantic tropical-Mediterranean species. Eur J Phycol 31:133–141CrossRefGoogle Scholar
  60. Pakker H, Breeman AM, Prud’homme van Reine WF, van den Hoek C (1996) Temperature responses of tropical to warm temperate seaweeds. I. Absence of ecotypic differentiation in amphi-Atlantic tropical-Canary Islands species. Eur J Phycol 31:123–132CrossRefGoogle Scholar
  61. Petrus L, Noordermeer M (2006) Biomass to biofuels, a chemical perspective. Green Chem 8:861–867CrossRefGoogle Scholar
  62. Raven JA, Osmond CB (1992) Inorganic carbon assimilation processes and their ecological significance in inter- and sub-tidal macroalgae of North Carolina. Funct Ecol 6:41–47CrossRefGoogle Scholar
  63. Raven JA, Beardall J, Roberts S (1989) The ecophysiology of inorganic carbon assimilation by Durvillaea potatorum (Durvillaeales, Phaeophyta). Phycologia 28:429–437CrossRefGoogle Scholar
  64. Renaud SM, Luong-Van JT (2006) Seasonal variation in the chemical composition of tropical Australia marine macroalgae. J Appl Phycol 18:381–387CrossRefGoogle Scholar
  65. Righelato R, Spracklen DV (2007) Carbon mitigation by biofuels or by saving and restoring forests? Science 317:902PubMedCrossRefGoogle Scholar
  66. Ritschard RL (1992) Marine algae as a CO2 sink. Water Air Soil Pollut 64:289–303CrossRefGoogle Scholar
  67. Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng T-H, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371PubMedCrossRefGoogle Scholar
  68. Sahoo D, Yarish C (2005) Mariculture of seaweeds. In: Anderson RA (ed.) Algal culturing techniques. Elsevier, pp 219–237Google Scholar
  69. Sawyer D (2008) Climate change, biofuels and eco-social impacts in the Brazilian Amazon and Cerrado Phil Trans Royal Soc B 363:1747–1752Google Scholar
  70. Schaffelke B (1999) Short term nutrient pulses as tools to assess responses of coral reef macroalgae to enhanced nutrient availability. Mar Ecol Prog Ser 182:305–310CrossRefGoogle Scholar
  71. Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu T-H (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change science 319:1238–140Google Scholar
  72. Seo Y-B, Lee Y-W, Lee C-H, You H-C (2010) Red algae and their use in papermaking. Bioresour Technol 101:2549–2553PubMedCrossRefGoogle Scholar
  73. Shiel DR, Steinbeck JR, Foster MS (2004) Ten years of induced ocean warming causes comprehensive changes in marine benthic communities. Ecology 85:1833–1839CrossRefGoogle Scholar
  74. Sievannen L, Crawford B, Pollnac R, Lowe C (2005) Weeding through assumptions of livelihood approaches in ICM: seaweed farming in the Philippines and Indonesia. Ocean Coast Manage 48:297–313CrossRefGoogle Scholar
  75. Tilman D, Hill J, Lehman C (2006) Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314:1598–1600PubMedCrossRefGoogle Scholar
  76. Titlyanov EA, Yakovleva IM, Titlyanova TV (2007) Interaction between benthic algae (Lyngbya bouillonii, Dictyota dichotoma) and scleractinian coral Porites lutea in direct contact. J Exp Mar Biol Ecol 342:282–291CrossRefGoogle Scholar
  77. Yokohama Y (1973) A comparative study on photosynthesis temperature relationships and their seasonal changes in marine benthic algae. Int Rev Gesamten Hydrobiol 58:463–472CrossRefGoogle Scholar
  78. Zemke-White L, Ohno M (1999) World seaweed utilization: an end of century summary. J Appl Phycol 11:369–376CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Ik Kyo Chung
    • 1
  • John Beardall
    • 2
  • Smita Mehta
    • 2
  • Dinabandhu Sahoo
    • 3
  • Slobodanka Stojkovic
    • 2
    • 4
  1. 1.Division of Earth Environmental SystemPusan National UniversityPusanRepublic of Korea
  2. 2.School of Biological SciencesMonash UniversityClaytonAustralia
  3. 3.Marine Biotechnology Laboratory, Department of BotanyUniversity of DelhiDelhiIndia
  4. 4.CSIROCMARHobartAustralia

Personalised recommendations