Advertisement

Journal of Applied Phycology

, Volume 23, Issue 3, pp 457–466 | Cite as

Effects of N supply on the accumulation of photosynthetic pigments and photoprotectors in Gracilaria tenuistipitata (Rhodophyta) cultured under UV radiation

  • José Bonomi BarufiEmail author
  • Nathalie Korbee
  • Mariana C. Oliveira
  • Félix L. Figueroa
Article

Abstract

We have studied the effects of nitrate supply under photosynthetic active radiation (PAR) plus ultraviolet radiation (UVR) exposure on photosynthetic pigments (chlorophyll a and carotenoids), photoprotective UV screen mycosporine-like amino acids (MAAs), and photosynthetic parameters, including the maximum quantum yield (F v/F m) and electron transport rate (ETR) on the red agarophyte Gracilaria tenuistipitata. Apical tips of G. tenuistipitata were cultivated under ten different concentrations of NO 3 for 7 days. It has been shown that G. tenuistipitata cultured under laboratory conditions has the ability to accumulate high amounts of MAAs following a nitrate concentration-dependent manner under PAR + UVR. Two MAAs were identified, shinorine and porphyra-334. The relative concentration of the first increased under high concentrations of nitrate, while the second one decreased. The presence of antheraxanthin is reported for the first time in this macroalgae, which also contains zeaxanthin, lutein, and β-carotene. The accumulation of pigments, photoprotective compounds, and photosynthetic parameters of G. tenuistipitata is directly related to N availability. All variables decreased under low N supplies and reached constant maximum values with supplements higher than 0.5 mM NO 3 . Our results suggest a high potential to acclimation and photoprotection against stress factors (including high PAR and UVR) directly related to N availability for G. tenuistipitata.

Keywords

Carotenoids Gracilaria tenuistipitata In vivo chlorophyll a fluorescence N availability Photoprotection Photosynthesis 

Notes

Acknowledgements

We thank the financial support of the Ministry of Science and Innovation of Spain (Project CGL2008 05407-C03-01) and Junta de Andalucía research group “Photobiology and Biotechnology of Marine Organisms” (RNM-295). We also acknowledge the fellowship to J.B. Barufi by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) from the Ministry of Education in Brazil. M.C. Oliveira thanks the National Council for Scientific and Technological Development (CNPq) (scholarships and research projects 470417/2006-4 and 301217/2007-6) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP). Finally, we thank Grazyna A. Bonomi for the language review.

References

  1. Ballottari M, Dall’Osto L, Morosinotto T, Bassi R (2007) Contrasting behaviour of higher plant photosystem I and II antenna systems during acclimation. J Biol Chem 282:8947–8958PubMedCrossRefGoogle Scholar
  2. Barufi JB, Oliveira EC, Plastino EM, Oliveira MC (2010) Life history, morphological variability and growth rates of the life phases of Gracilaria tenuistipitata (Gracilariales: Rhodophyta) in vitro. Sci Mar 74:297–303CrossRefGoogle Scholar
  3. Bischof K, Gómez I, Molis M, Hanelt D, Karsten U, Lüder U, Roleda MY, Zacher K, Wiencke C (2006) Ultraviolet radiation shapes seaweed communities. Rev Environ Sci Biotechnol 5:141–166CrossRefGoogle Scholar
  4. Brown LM, McLachlan J (1982) Atypical carotenoids for the Rhodophyceae in the genus Gracilaria. Phycologia 21:9–16CrossRefGoogle Scholar
  5. Buma AGJ, Van Oyen T, Van de Poll WH, Veldhuis MJW, Gieskes WWC (2000) On the high sensitivity of the marine prymnesiophyte Emiliania huxleyi to ultraviolet-B radiation. J Phycol 36:296–303CrossRefGoogle Scholar
  6. Cabello-Pasini A, Figueroa FL (2005) Effect of nitrate concentration on the relation between photosynthetic oxygen evolution and electron transport rate in Ulva rigida (Chlorophyta). J Phycol 41:1169–1177CrossRefGoogle Scholar
  7. Cardozo KHM, Carvalho VM, Pinto E, Colepicolo P (2006) Fragmentation of mycosporine-like amino acids by hydrogen/deuterium exchange and electrospray ionisation tandem mass spectrometry. Rapid Commun Mass Spectrom 20:253–258PubMedCrossRefGoogle Scholar
  8. Carnicas E, Jiménez C, Niell FX (1999) Effects of changes of irradiance on the pigment composition of Gracilaria tenuistipitata var. liui Zhang et Xia. J Photochem Photobiol B Biol 50:149–158CrossRefGoogle Scholar
  9. Carreto JI, Carignan MO, Montoya NG (2005) A high-resolution reverse-phase liquid chromatography method for the analysis of mycosporine-like amino acids (MAAs) in marine organisms. Mar Biol 146:237–252CrossRefGoogle Scholar
  10. Conde FR, Churio MS, Previtali CM (2004) The deactivation pathways of the excited-states of the mycosporine-like amino acids shinorine and porphyra-334 in aqueous solution. Photochem Photobiol Sci 3:960–967PubMedCrossRefGoogle Scholar
  11. Conde FR, Churio MS, Previtali CM (2007) Experimental study of the excited-state properties and photostability of the mycosporine-like amino acid palythine in aqueous solution. Photochem Photobiol Sci 6:669–674PubMedCrossRefGoogle Scholar
  12. De la Coba F, Aguilera J, Gálvez MV, Álvarez M, Gallego E, Figueroa FL, Herrera E (2009) Prevention of the ultraviolet effects on clinical and histopathological changes, as well as the heat shock protein-70 expression in mouse skin by topical application of algal UV-absorbing compounds. J Dermatol Sci 55:161–169PubMedCrossRefGoogle Scholar
  13. Demmig-Adams B, Adams WW (2006) Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol 171:11–21CrossRefGoogle Scholar
  14. Dunlap WC, Yamamoto Y (1995) Small-molecule antioxidants in marine organisms: antioxidant activity of mycosporine–glycine. Comp Biochem Physiol 112B:105–114Google Scholar
  15. Edwards P (1970) Illustrated guide to the seaweeds and sea grasses in the vicinity of Porto Aransas, Texas. Contrib Mar Sci 15:1–228Google Scholar
  16. Esteban R, Martínez B, Fernández-Marín B, Becerril JM, García-Plazaola JI (2009) Carotenoid composition in Rhodophyta: insights into xanthophyll regulation in Corallina elongata. Eur J Phycol 44:221–230CrossRefGoogle Scholar
  17. Figueroa FL, Conde-Álvarez R, Gómez I (2003) Relations between electron transport rates determined by pulse amplitude modulated chlorophyll fluorescence and oxygen evolution in macroalgae under different light conditions. Photosynth Res 75:259–275PubMedCrossRefGoogle Scholar
  18. Figueroa FL, Bueno A, Korbee N, Santos R, Mata L, Schuenhoff A (2008) Accumulation of mycosporine-like amino acids in Asparagopsis armata grown in tanks with fishpond effluents of Gilthead Sea Bream, Sparus aurata. J World Aquac Soc 39:692–699CrossRefGoogle Scholar
  19. García-Pichel F (1994) A model for internal self-shading in planktonic organism and its implications for the usefulness of ultraviolet sunscreens. Limnol Oceanogr 39:1704–1717CrossRefGoogle Scholar
  20. García-Sánchez MJ, Fernández JA, Niell FX (1993) Biochemical and physiological responses of Gracilaria tenuistipitata under two different nitrogen treatments. Physiol Plantarum 88:631–637CrossRefGoogle Scholar
  21. Grassi G, Colom MR, Minotta G (2001) Effects of nutrient supply on photosynthetic acclimation and photoinhibition of one-year-old foliage of Picea abies. Physiol Plant 111:245–254CrossRefGoogle Scholar
  22. Grzymski J, Johnsen G, Sakshaug E (1997) The significance of intracellular self-shading on the bio optical properties of brown, red and green macroalgae. J Phycol 33:408–414CrossRefGoogle Scholar
  23. Haglund K, Pedersén M (1993) Outdoor pond cultivation of the subtropical marine red alga Gracilaria tenuistipitata in brackish water in Sweden: growth, nutrient uptake, cocultivation with rainbow trout and epiphyte control. J Appl Phycol 5:271–284CrossRefGoogle Scholar
  24. Hagopian JC, Nyvall P, Oliveira MC (2002) Purification of plastid DNA from an enriched rhodoplast fraction of the red alga Gracilaria tenuistipitata. Plant Mol Biol Report 20:399–406CrossRefGoogle Scholar
  25. Hagopian JC, Reis M, Kitajima JP, Bhattacharya D, Oliveira MC (2004) Comparative analysis of the complete plastid genome sequence of the red alga Gracilaria tenuistipitata var. liui provides insights into the evolution of rhodoplasts and their relationship to other plastids. J Mol Evol 59:464–477PubMedCrossRefGoogle Scholar
  26. Hegglin MI, Sheperd TV (2009) Large climate-induced changes in ultraviolet index and stratospheric- to troposphere ozone flux. Nat Geosci. doi: 1010381.INGE0604 Google Scholar
  27. Henley WJ, Levavasseur G, Franklin LA, Osmond CB, Ramus J (1991) Photoacclimation and photoinhibition in Ulva rotundata as influenced by nitrogen availability. Planta 184:235–243CrossRefGoogle Scholar
  28. Huang L, Tan Y, Song X, Huang X, Wang H, Zhang S, Dong J, Chen R (2003) The status of the ecological environment and a proposed protection strategy in Sanya Bay, Hainan Island, China. Mar Pol Bull 47:180–186CrossRefGoogle Scholar
  29. Huovinen P, Gómez I, Figueroa FL, Ulloa N, Morales V, Lovegreen C (2004) Ultraviolet-absorbing mycosporine-like amino acids in red macroalgae from Chile. Bot Mar 47:21–29CrossRefGoogle Scholar
  30. Huovinen P, Matos J, Pinto IS, Figueroa FL (2006) The role of ammonium in photoprotection against high irradiance in the red alga Grateloupia lanceola. Aquat Bot 24:308–316CrossRefGoogle Scholar
  31. Israel A, Martinez-Gross M, Friedlander M (1999) Effect of salinity and pH on growth and agar yield of Gracilaria tenuistipitata var. liui in laboratory and outdoor cultivation. J Appl Phycol 11:543–549CrossRefGoogle Scholar
  32. Jiang H, Gao K, Helbling EW (2008) UV-absorbing compounds in Porphyra haitanensis (Rhodophyta) with special reference to effects of desiccation. J Appl Phycol 20:387–395CrossRefGoogle Scholar
  33. Jones LW, Kok B (1966) Photoinhibition of chloroplast reactions. I. Kinetics and action spectra. Plant Physiol 41:1037–1043PubMedCrossRefGoogle Scholar
  34. Karsten U, Franklin LA, Lüning K, Wiencke C (1998) Natural ultraviolet radiation and photosynthetically active radiation induce formation of mycosporine-like amino acids in the marine macroalga Chondrus crispus (Rhodophyta). Planta 205:257–262CrossRefGoogle Scholar
  35. Karsten U, Dummermuth A, Hoyer K, Wiencke C (2003) Interactive effects of ultraviolet radiation and salinity on the ecophysiology of two Arctic red algae from shallow waters. Polar Biol 26:249–258Google Scholar
  36. Korbee N, Huovinen P, Figueroa FL, Aguilera J, Karsten U (2005) Availability of ammonium influences photosynthesis and the accumulation of mycosporine-like amino acids in two Porphyra species (Bangiales, Rhodophyta). Mar Biol 146:645–654CrossRefGoogle Scholar
  37. Korbee N, Figueroa FL, Aguilera J (2006) Acumulación de aminoácidos tipo micosporina (MAAs): biosíntesis, fotocontrol y funciones ecofisiológicas. Revta Chil Hist Natl 79:119–132Google Scholar
  38. Korbee N, Mata MT, Figueroa FL (2010) Photoprotection mechanisms against ultraviolet radiation in Heterocapsa sp. (Dinophyceae) are influenced by nitrogen availability: Mycosporine-like amino acids vs. xanthophyll cycle. Limnol Oceanogr 55:899–908CrossRefGoogle Scholar
  39. Korbee-Peinado N, Abdala-Díaz RT, Figueroa FL, Helbling EW (2004) Ammonium and UV radiation stimulate the accumulation of mycosporine-like amino acids in Porphyra columbina (Rhodophyta) from Patagonia, Argentina. J Phycol 40:248–259CrossRefGoogle Scholar
  40. Li F, Stolarski RS, Newman PA (2009) Stratospheric ozone in the post-CFC era. Atmos Chem Phys 9:2207–2213CrossRefGoogle Scholar
  41. Lopes PF, Oliveira MC, Colepicolo P (2002) Characterization and daily variation of nitrate reductase in Gracilaria tenuistipitata (Rhodophyta). Biochem Biophys Res Commun 295:50–54PubMedCrossRefGoogle Scholar
  42. Macchiavello J, Paula EJ, Oliveira EC (1998) Growth rate responses of five commercial strains of Gracilaria (Rhodophyta, Gracilariales) to temperature and light. J World Aquacult Soc 29:259–266CrossRefGoogle Scholar
  43. Makino A, Osmond CB (1991) Effects of nitrogen nutrition on nitrogen partitioning between chloroplast and mitochondria in pea and wheat. Plant Physiol 96:366–362CrossRefGoogle Scholar
  44. Marquardt J (1998) Effects of carotenoid-depletion on the photosynthetic apparatus of a Galdieria sulphuraria (Rhodophyta) strain that retains its photosynthetic apparatus in the dark. J Plant Physiol 152:372–380Google Scholar
  45. Marquardt J, Hanelt D (2004) Carotenoid composition of Delesseria lancifolia and other marine red algae from polar and temperate habitats. Eur J Phycol 39:285–292CrossRefGoogle Scholar
  46. McLachlan J (1982) Inorganic nutrition of marine macro-algae in culture. In: Srivastava LM (ed) Synthetic and degradative processes in marine macrophytes. Walter de Gruyter, Berlin, pp 71–98Google Scholar
  47. Mohovic B, Gianesella SMF, Laurion I, Roy S (2006) Ultraviolet-B photoprotection efficiency of mesocosm-enclosed natural phytoplankton communities from different latitudes: Rimouski (Canada) and Ubatuba (Brazil). Photochem Photobiol 82:952–961PubMedCrossRefGoogle Scholar
  48. Neale PJ, Banaszak AT, Jarriel CR (1998) Ultraviolet sunscreens in Gymnodinium sanguineum (Dinophyceae): mycosporine-like amino acids protect against inhibition of photosynthesis. J Phycol 34:928–938CrossRefGoogle Scholar
  49. Pérez-Lloréns JL, Vergara JJ, Pino RR, Hernández I, Peralta G, Niell FX (1996) The effect of photoacclimation on the photosynthetic physiology of Ulva curvata and Ulva rotundata (Ulvales, Chlorophyta). Eur J Phycol 331:349–359CrossRefGoogle Scholar
  50. Platt T, Gallegos CL, Harrison WG (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 38:687–701Google Scholar
  51. Rmiki N, Brunet C, Cabioch J, Lemoine Y (1996) Xanthophyll-cycle and photosynthetic adaptation to environment in macro- and microalgae. Hydrobiologia 326/327:407–413CrossRefGoogle Scholar
  52. Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62CrossRefGoogle Scholar
  53. Schubert N, García-Mendoza E, Pacheco-Ruiz I (2006) Carotenoid composition of marine red algae. J Phycol 42:1208–1216CrossRefGoogle Scholar
  54. Seemann JR, Sharkey TD, Wang JL, Osmond CB (1987) Environmental effects on photosynthesis, nitrogen-use efficiency, and metabolic pools in leaves of sun and shade plants. Plant Physiol 84:796–802PubMedCrossRefGoogle Scholar
  55. Setlow RB (1974) The wavelengths in sunlight effective in producing skin cancer: a theoretical analysis. Proc Natl Acad Sci USA 71:3363–3366PubMedCrossRefGoogle Scholar
  56. Sugiharto B, Miyata K, Nakamoto H, Sasakawa H, Sugiyama T (1990) Regulation of expression of carbon-assimilating enzymes by nitrogen in maize leaf. Plant Physiol 92:963–969PubMedCrossRefGoogle Scholar
  57. Talarico L, Maranzana G (2000) Light and adaptative responses in red macroalgae: an overview. J Photochem Photobiol 56:1–11CrossRefGoogle Scholar
  58. Ursi S, Plastino EM (2001) Crescimento in vitro de linhagens de coloração vermelha e verde clara de Gracilaria sp. (Gracilariales, Rhodophyta) em dois meios de cultura: análise de diferentes estádios reprodutivos. Rev Bras Bot São Paulo 4:585–592Google Scholar
  59. Ursi S, Pedersén M, Plastino EM, Snoeijs P (2003) Intraspecific variation of photosynthesis, respiration and photoprotective carotenoids in Gracilaria birdiae (Gracilariales, Rhodophyta). Mar Biol 142:997–1007Google Scholar
  60. Van de Poll WH, Buma AGJ (2009) Does ultraviolet radiation affect xanthophyll cycle in marine phytoplankton? Photochem Photobiol Sci 8:1295–1301PubMedCrossRefGoogle Scholar
  61. Vergara JJ, Bird KT, Niell FX (1995) Nitrogen assimilation following NH4+ pulses in the red alga Gracilariopsis lemaneiformis: effect on C metabolism. Mar Ecol Prog Ser 122:253–263CrossRefGoogle Scholar
  62. Verhoeven AS, Demming-Adams B, Adams WW III (1997) Enhanced employment of the xanthophyll cycle and thermal dissipation in spinach exposed to high light and N stress. Plant Physiol 113:817–824PubMedGoogle Scholar
  63. Villafañe VE, Sundbäck K, Figueroa FL, Helbling EW (2003) Photosynthesis in the aquatic environment as affected by UVR. In: Helbling EW, Zagarese H (eds) UV effects in aquatic organisms and ecosystems. The Royal Society of Chemistry, Cambridge, pp 357–397CrossRefGoogle Scholar
  64. Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313Google Scholar
  65. Yakovleva IM, Titlyanov EA (2001) Effect of high visible and UV irradiance on subtidal Chondrus crispus: stress, photoinhibition and protective mechanisms. Aquat Bot 71:47–61CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • José Bonomi Barufi
    • 1
    Email author
  • Nathalie Korbee
    • 2
  • Mariana C. Oliveira
    • 1
  • Félix L. Figueroa
    • 2
  1. 1.Departamento de BotânicaInstituto de Biociências da Universidade de São PauloSão PauloBrazil
  2. 2.Departamento de Ecología y Geología, Facultad de CienciasUniversidad de MálagaMálagaSpain

Personalised recommendations