Journal of Applied Phycology

, Volume 23, Issue 3, pp 439–447 | Cite as

Effects of salinity on the growth rate, carrageenan yield, and cellular structure of Kappaphycus alvarezii (Rhodophyta, Gigartinales) cultured in vitro

  • Leila Hayashi
  • Gabriel S. M. Faria
  • Beatriz G. Nunes
  • Carmen S. Zitta
  • Lidiane A. Scariot
  • Ticiane Rover
  • Marthiellen R. L. Felix
  • Zenilda L. Bouzon
Article

Abstract

Kappaphycus alvarezii was cultured in vitro under salinities ranging from 15 to 55 psu for 35 days to determine the differential effect on growth rate, carrageenan yield, and cellular structure. Plants kept in 15 psu died after 3 days, while plants cultured in 55 psu presented low growth rates during the entire experimental period (0.28% day−1). Plants cultured in 25, 35, and 45 psu showed growth rates normally associated with this species (between 3% and 4% day−1) and similar cellular morphology. Carrageenan yield was significantly higher in plants cultured in 25 psu in relation to the other treatments. As observed by light microscopy, plants cultured in 15 psu showed cellular turgidity and increased cell wall thickness, both consequences of hyposalinity. Chloroplasts and other membranous organelles underwent rupture and considerable disorganization in ultrastructure. Although branches from the 55 psu samples showed plasmolysis, cells were able to maintain chloroplast integrity, despite their rudimentary features. In high salinities, great concentrations of floridean starch grains were observed in subcortical cells, indicating their probable participation in osmoregulation. Based on these results, we defined the range of 25 to 45 psu as the limits of saline tolerance for K. alvarezii. While new field studies are required to confirm these results, it can be concluded that new sites, such as inactive or abandoned shrimp tanks with salinities up to 25 psu, could be considered for commercial farming.

Keywords

In vitro culture Kappaphycus alvarezii Salinity TEM 

References

  1. Areces AJ (1995) Cultivo comercial de carragenófitas del genero Kappaphycus Doty. In: Alveal K, Ferrario ME, Oliveira EC, Sar E (eds) Manual de Metodos Ficológicos. Universidad de Concepción, Concepción, pp 529–549Google Scholar
  2. Arnold W, Mitrenga D, Mayersbach H (1975) Gefriertrocknung und einbsettung in glycolmethacrylat (GMA)—ergehnisse histochemischer reaktion. Acta Histochem 14:271–277Google Scholar
  3. Ask E, Azanza RV (2002) Advances in cultivation technology of commercial eucheumatoid species: a review with suggestions for future research. Aquaculture 206:257–277CrossRefGoogle Scholar
  4. Azanza-Corrales R, Sa-a P (1990) The farmed Eucheuma species (Gigartinales, Rhodophyta) in Danajon Reef, Philippines: carrageenan properties. Hydrobiologia 204/205:521–525CrossRefGoogle Scholar
  5. Bondu S, Cerantola S, Kervarec N, Deslandes E (2009) Impact of the salt stress on the photosynthetic carbon flux and 13C-label distribution within floridoside and digeneaside in Solieria chordalis. Phytochem 70:173–184CrossRefGoogle Scholar
  6. Bouzon ZL, Miguens F, Oliveira EC (2000) Male gametogenesis in the red algae Gracilaria and Gracilariopsis (Rhodophyta, Gracilariales). Crypt Algol 21:33–47CrossRefGoogle Scholar
  7. Bulboa CR, Paula EJ (2005) Introduction of non-native species of Kappaphycus alvarezii (Rhodophyta, Gigartinales) in subtropical waters: comparative analysis of growth rates of Kappaphycus alvarezii and Kappaphycus striatum in vitro and in the sea in south-eastern Brazil. Phycol Res 53:183–188CrossRefGoogle Scholar
  8. Bulboa CR, Paula EJ, Chow F (2007) Laboratory germination and sea out-planting of tetraspore progeny from Kappaphycus striatum (Rhodophyta) in subtropical waters of Brazil. J Appl Phycol 19:357–363CrossRefGoogle Scholar
  9. Conitz JM, Fagen R, Lindstrom SC, Plumley FG, Stekoll MS (2001) Growth and pigmentation of juvenile Porphyra torta (Rhodophyta) gametophytes in response to nitrate, salinity and inorganic carbon. J Appl Phycol 13:423–431CrossRefGoogle Scholar
  10. Daugherty BK, Bird KT (1988) Salinity and temperature effects on agar production from Gracilaria verrucosa strain G-16. Aquaculture 75:105–113CrossRefGoogle Scholar
  11. Dawes CJ, Orduña-Rojas J, Robledo D (1999) Response of the tropical seaweed Gracilaria cornea to temperature, salinity and irradiance. J Appl Phycol 10:419–425CrossRefGoogle Scholar
  12. Eggert A, Nitschke U, West JA, Michalik D, Karsten U (2007) Acclimatation of the intertidal red alga Bangiopsis subsimplex (Stylonematophyceae) to salinity changes. J Exp Mar Biol Ecol 343:176–186CrossRefGoogle Scholar
  13. Ekman P, Yu S, Pedersen M (1991) Effects of altered salinity, darkness and algal nutrient status on floridoside and starch content, α-galactosidase activity and agar yield of cultured Gracilaria sordida. Br Phycol J 26:123–131CrossRefGoogle Scholar
  14. Gahan PB (1984) Plant histochemistry and cytochemistry: an introduction. Academic, LondonGoogle Scholar
  15. Gordon EM, Mccandless EL (1973) Ultrastructure and histochemistry of Chondrus crispus Stack. Proc Nova Scotia Inst Sci 27:111–133Google Scholar
  16. Goulard F, Diouris M, Quere G, Deslandes E, Floćh J-Y (2001) Salinity effects on NDP-sugars, floridoside, starch, and carrageenan yield, and UDP-glucose-pyrophophorylase and -epimerase activities of cultured Solieria chordalis. J Plant Physiol 158:1387–1394CrossRefGoogle Scholar
  17. Hayashi L, Paula EJ, Chow F (2007a) Growth rate and carrageenan analyses in four strains of Kappaphycus alvarezii (Rhodophyta, Gigartinales) farmed in the subtropical waters of São Paulo State, Brazil. J Appl Phycol 19:393–399CrossRefGoogle Scholar
  18. Hayashi L, Oliveira EC, Bleicher-Lhonneur G, Boulenguer P, Pereira RTL, von Seckendorff R, Shimoda VT, Leflamand A, Vallée P, Critchley AT (2007b) The effects of selected cultivation conditions on the carrageenan characteristics of Kappaphycus alvarezii (Rhodophyta, Solieriaceae) in Ubatuba Bay, São Paulo, Brazil. J Appl Phycol 19:505–511CrossRefGoogle Scholar
  19. Hayashi L, Yokoya NS, Kikuchi DM, Oliveira EC (2008a) Callus induction and micropropagation improved by colchicines and phytoregulators in Kappaphycus alvarezii (Rhodophyta, Solieriaceae). J Appl Phycol 20:653–659CrossRefGoogle Scholar
  20. Hayashi L, Yokoya NS, Ostini S, Pereira RTL, Braga ES, Oliveira EC (2008b) Nutrients removed by Kappaphycus alvarezii (Rhodophyta, Solieriaceae) in integrated cultivation with fishes in re-circulating water. Aquaculture 277:185–191CrossRefGoogle Scholar
  21. Hurtado-Ponce AQ, Pondevida HB (1997) The interactive effect of some environmental factors on the growth, agar yield and quality of Gracilariopsis bailinae (Zhang et Xia) cultured in tanks. Bot Mar 40:217–223CrossRefGoogle Scholar
  22. Kakinuma M, Coury DA, Kuno Y, Itoh S, Kozawa Y, Inagaki E, Yoshiura Y, Amano H (2006) Physiological and biochemical responses to thermal and salinity stresses in a sterile mutant of Ulva pertusa (Ulvales, Chlorophyta). Mar Biol 149:97–106CrossRefGoogle Scholar
  23. Katz S, Kizner Z, Dubinsky Z, Friedlander M (2000) Responses of Porphyra linearis (Rhodophyta) to environmental factors under controlled culture conditions. J Appl Phycol 12:535–542CrossRefGoogle Scholar
  24. Kirst GO (1989) Salinity tolerance of eukaryotic marine algae. Annu Rev Plant Physiol Plant Mol Biol 40:21–53Google Scholar
  25. Kumar M, Kumari P, Gupta V, Reddy CRK, Jha B (2010) Biochemical responses of red alga Gracilaria corticata (Gracilariales, Rhodophyta) to salinity induced oxidative stress. J Exp Mar Biol Ecol. doi:10.1016/j.jembe.2010.06.001
  26. Largo DB, Fukami F, Nishijima T, Ohno M (1995) Laboratory-induced development of ice-ice disease of the farmed red algae Kappaphycus alvarezii and Eucheuma dnticulatum (Solieriaceae, Gigartinales, Rhodophyta). J Appl Phycol 7:539–543CrossRefGoogle Scholar
  27. Li R, Li J, Wu CY (1990) Effect of ammonium on growth and carrageenan content in Kappaphycus alvarezii (Gigartinales, Rhodophyta). Hydrobiologia 204/205:499–503Google Scholar
  28. Lignell A, Pedersén M (1989) Ágar composition as a function of morphology and growth rate. Studies on some morphological strains of Gracilaria secundata and Gracilaria verrucosa (Rhodophyta). Bot Mar 32:219–227CrossRefGoogle Scholar
  29. Lobban CS, Harrison PJ (1994) Seaweed ecology and physiology. Cambridge University Press, Cambridge, p 366CrossRefGoogle Scholar
  30. Macler BA (1988) Salinity effects on photosynthesis, carbon allocation, and nitrogen assimilation in the red alga Gelidium couteri. Plant Physiol 88:690–694PubMedCrossRefGoogle Scholar
  31. McLachlan J (1973) Growth media-marine. In: Stein JR (ed) Handbook of phycological methods. Culture methods and growth measurements. Cambridge University Press, Cambridge, pp 25–51Google Scholar
  32. Ohno M, Nang HQ, Hirase S (1996) Cultivation and carrageenan yield and quality of Kappaphycus alvarezii in the waters of Vietnam. J Appl Phycol 8:431–437CrossRefGoogle Scholar
  33. Paula EJ, Pereira RTL, Ohno M (1999) Strain selection in Kappaphycus alvarezii var. alvarezii (Solieriaceae, Rhodophyta) using tetraspore progeny. J Appl Phycol 11:111–121CrossRefGoogle Scholar
  34. Paula EJ, Erbert C, Pereira RTL (2001) Growth rate of the carrageenophyte Kappaphycus alvarezii (Rhodophyta, Gigartinales) in vitro. Phycol Res 49:155–161Google Scholar
  35. Pueschel CM (1979) Ultrastructure of tetrasporogenesis in Palmaria palmata (Rhodophyta). J Phycol 15:409–424Google Scholar
  36. Reed RH (1990) Solute accumulation and osmotic adjustment. In: Cole KM, Sheath RG (eds) Biology of red algae. Cambridge University Press, Cambridge, p 517Google Scholar
  37. Stanley N (1987) Production, properties and uses of carrageenan. FAO Fish Tech Pap 288:116–146Google Scholar
  38. Tropin IV, Radzinskaya NV, Voskoboinikov GM (2003) The influence of salinity on the rate of dark respiration and structure of the cells of brown algae thalli from the Barents Sea littoral. Biol Bull 30:40–47CrossRefGoogle Scholar
  39. Yokoya NS, Oliveira EC (1992) Effects of salinity on the growth rate, morphology and water content of some Brazilian red algae of economic importance. Cienc Mar 18:49–64Google Scholar
  40. Yu S, Pedersén M (1990) The effect of salinity changes on the activity of α-galactosidase of the red algae Gracilaria sordida and Gracilaria tenuistipitata. Bot Mar 33:385–391CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Leila Hayashi
    • 1
  • Gabriel S. M. Faria
    • 1
  • Beatriz G. Nunes
    • 1
    • 2
  • Carmen S. Zitta
    • 1
    • 3
  • Lidiane A. Scariot
    • 1
    • 3
  • Ticiane Rover
    • 1
    • 3
  • Marthiellen R. L. Felix
    • 1
    • 2
  • Zenilda L. Bouzon
    • 1
  1. 1.Universidade Federal de Santa Catarina (UFSC)Laboratório de Algas MarinhasFlorianópolisBrazil
  2. 2.UFSC, Departamento de AquiculturaFlorianópolisBrazil
  3. 3.UFSC, Departamento de BotânicaFlorianópolisBrazil

Personalised recommendations