Journal of Applied Phycology

, Volume 23, Issue 2, pp 209–218 | Cite as

Optimization of protoplast yields from the red algae Gracilaria dura (C. Agardh) J. Agardh and G. verrucosa (Huds.) Papenfuss

  • Vishal Gupta
  • Manoj Kumar
  • Puja Kumari
  • C. R. K. Reddy
  • Bhavanath Jha


This study reports on the optimization of protoplast yield from two important tropical agarophytes Gracilaria dura and Gracilaria verrucosa using different cell-wall-degrading enzymes obtained from commercial sources. The conditions for achieving the highest protoplast yield was investigated by optimizing key parameters such as enzyme combinations and their concentrations, duration of enzyme treatment, enzyme pH, mannitol concentration, and temperature. The significance of each key parameter was also further validated using the statistical central composite design. The enzyme composition with 4% cellulase Onozuka R-10, 2% macerozyme R-10, 0.5% pectolyase, and 100 U agarase, 0.4 M mannitol in seawater (30‰) adjusted to pH 7.5 produced the highest protoplast yields of 3.7 ± 0.7 × 106 cells g−1 fresh wt for G. dura and 1.2 ± 0.78 × 106 cells g−1 fresh wt for G. verrucosa when incubated at 25°C for 4–6 h duration. The young growing tips maximally released the protoplasts having a size of 7–15 μm in G. dura and 15–25 μm in G. verrucosa, mostly from epidermal and upper cortical regions. A few large-size protoplasts of 25–35 μm, presumably from cortical region, were also observed in G. verrucosa.


Agarophytes Commercial enzymes Gracilaria Protoplast production Rhodophyta 



The financial support received from the Department of Science and Technology (DST), New Delhi (SR/SO/PS-53/2005), is gratefully acknowledged. The first author (VG) also expresses his gratitude to DST, for the financial support and the second (MK) and third authors (PK) to the CSIR, New Delhi, for awarding the Senior and Junior Research Fellowships, respectively.


  1. Araki T, Lu Z, Morishita T (1998) Optimization of parameters for isolation of protoplasts from Gracilaria verrucosa (Rhodophyta). J Mar Biot 6:193–197Google Scholar
  2. Bellanger F, Verdus MC, Henocq V, Christiaen D (1990) Determination of composition of the fibrillar part of Gracilaria verrucosa (Gracilariales, Rhodophyta) cell wall in order to prepare protoplasts. Hydrobiologia 204/205:527–531CrossRefGoogle Scholar
  3. Bixler HJ, Porse H (2010) A decade of change in the seaweed hydrocolloids industry. J Appl Phycol. doi: 10.1007/s10811-010-9529-3 Google Scholar
  4. Bjork M, Ekman P, Wallin A, Pederson M (1990) Effect of growth rate and other factors on protoplast yield from four species of Gracilaria (Rhodophyta). Bot Mar 33:433–439CrossRefGoogle Scholar
  5. Butler DM, Østgaard K, Boyen C, Evans LV, Jensen A, Kloareg B (1989) Isolation conditions for high yield of protoplasts from Laminaria saccharina and L. digitata (Phaeophyceae). J Exp Bot 40:1237–1246CrossRefGoogle Scholar
  6. Chen YC, Chiang YM (1995) Ultrastructure of cell wall regeneration from isolated protoplasts of Grateloupia sparsa (Halymeniaceae, Rhodophyta). Bot Mar 38:393–399CrossRefGoogle Scholar
  7. Chen YC, Shih HC (2000) Development of protoplasts of Ulva fasciata (Chlorophyta) for algal seed stock. J Phycol 36:608–615CrossRefGoogle Scholar
  8. Cheney DP (1990) Genetic improvement of seaweeds through protoplasts fusion. In: Yarish C, Penniman C, Van Patten P (eds) Economically important marine plants of the Atlantic: their biology and cultivation. Univ. Conn Sea Grant Program, Storrs, pp 15–25Google Scholar
  9. Cheney DP, Mar E, Saga N, Van der Meer J (1986) Protoplasts isolation and cell division in the agar producing seaweed Gracilaria (Rhodophyta). J Phycol 22:238–243Google Scholar
  10. Chou HN, Lu HK (1989) Protoplasts from seaweeds: isolation, culture and fusion. In: Miyachi S, Karube I, Ishida Y (eds) Current topics in marine biotechnology. Japanese Society for Marine Biotechnology, Tokyo, pp 227–230Google Scholar
  11. Christiaen D, Stadler T, Ondarza M, Verdus MC (1987) Structures and functions of the polysaccharides from the cell wall of Gracilaria verrucosa (Rhodophyceae, Gigartinales). Hydrobiologia 151(152):139–146CrossRefGoogle Scholar
  12. Critchley AT (1993) Gracilaria (Rhodophyta, Gracilariales): an economically important agarophyte. In: Ohno M, Critchley AT (eds) Seaweed cultivation and marine ranching. Kangawa International Fisheries Training Center and JICA, Yokosuka, pp 89–112Google Scholar
  13. Duckworth M, Yaphe W (1971) The structure of agar. Part 2. The use of bacterial agarase to elucidate structural features of the charged polysaccharides in agar. Carbohyd Res 16:435–445CrossRefGoogle Scholar
  14. Hong YX, Wang SJ (1993) Regeneration of whole plants from Gracilaria asiatica Chang et Xia protoplasts (Gracilariaceae, Rhodophyta). Hydrobiologia 260(261):429–436Google Scholar
  15. Kloareg B, Polne-Fuller M, Gibor A (1989) Mass production and regeneration of protoplasts from Macrocystis pyrifera. Plant Sci 62:105–112CrossRefGoogle Scholar
  16. Le Gall L, Rusig AM, Cosson J (2004) Organization of the microtubular cytoskeleton in protoplasts from Palmaria palmata (Palmariales, Rhodophyta). Bot Mar 47:231–237CrossRefGoogle Scholar
  17. Liu QY, Chen LCM, Taylor ARA (1992) Ultrastructure of cell wall regeneration by isolated protoplasts of Palmaria palmata (Rhodophyta). Bot Mar 35:21–33CrossRefGoogle Scholar
  18. Liu H, Yu W, Dai J, Gong Q, Yang K, Lu X (2004) Cryopreservation of protoplasts of the alga Porphyra yezoensis by vitrification. Plant Sci 166:97–102CrossRefGoogle Scholar
  19. Mantri VA, Thakur MC, Kumar M, Reddy CRK, Jha B (2009) The carpospore culture of industrially important red alga Gracilaria dura (Gracilariales, Rhodophyta). Aquaculture 297:85–90CrossRefGoogle Scholar
  20. Marinho-Soriano E, Bourret E (2005) Polysaccharides from the red seaweed Gracilaria dura (Gracilariales, Rhodophyta). Bioresour Technol 96:379–382PubMedCrossRefGoogle Scholar
  21. Meena R, Prasad K, Ramavat BK, Ghosh PK, Eswaran K, Thiruppathi S, Mantri VA, Subbarao PV, Siddhanta AK (2007) Preparation, characterization and benchmarking of agarose from Gracilaria dura of Indian waters. Carbohyd Polym 69:179–188CrossRefGoogle Scholar
  22. Meena R, Prasad K, Ganesan M, Siddhanta AK (2008) Superior quality agar from Gracilaria species (Gracilariales, Rhodophyta) collected from the Gulf of Mannar, India. J Appl Phycol 20:397–402CrossRefGoogle Scholar
  23. Mollet JC, Verdus MC, Kling R, Morvan H (1995) Improved protoplast yield and cell wall regeneration in Gracilaria verrucosa (Huds.) Papenfuss (Gracilariales, Rhodophyta). J Exp Bot 46:239–247CrossRefGoogle Scholar
  24. Provasoli L (1968) Media and products for the cultivation of marine algae. In: Watanabe A, Hattori A (eds) Culture and collection of algae. Japanese Society of Plant Physiologist, Tokyo, pp 63–75Google Scholar
  25. Rath J, Adhikary SP (2004) Effect of alkali treatment on the yield and quality of agar from red alga Gracilaria verrucosa (Rhodophyta, Gracilariales) occurring at different salinity gradient of Chilka lake. IJMS 33(2):202–205Google Scholar
  26. Reddy CRK, Dipakkore S, Kumar R, Jha B, Cheney DP, Fujita Y (2006) An improved enzyme preparation for rapid mass production of protoplast as seed stock for aquaculture of macrophytic marine green algae. Aquaculture 260:290–297CrossRefGoogle Scholar
  27. Reddy CRK, Jha B, Fujita Y, Ohno M (2008a) Seaweed micropropagation techniques and their potentials: an overview. J Appl Phycol 20:609–617CrossRefGoogle Scholar
  28. Reddy CRK, Gupta MK, Mantri VA, Jha B (2008b) Seaweed protoplasts: status, biotechnological perspectives and needs. J Appl Phycol 20:619–632CrossRefGoogle Scholar
  29. Reddy CRK, Gupta V, Jha B (2010) Developments in biotechnology of red algae. In: Seckbach J, Chapman DJ (eds) Red algae in the genomic age. Springer, HeidelbergGoogle Scholar
  30. Rochas C, Lahaye M (1989) Average molecular weight and molecular weight distribution of agarose and agarose-type polysaccharides. Carbohyd Polym 10:289–298CrossRefGoogle Scholar
  31. Salvador RC, Serrano AE (2005) Isolation of protoplasts from tissue fragments of Philippine cultivars of Kappaphycus alvarezii (Solieriaceae, Rhodophyta). J Appl Phycol 17:15–22CrossRefGoogle Scholar
  32. Smit AJ (2004) Medicinal and pharmaceutical of seaweed natural products: a review. J Appl Phycol 16:245–262CrossRefGoogle Scholar
  33. Yan XH, Wang SJ (1993) Regeneration of whole plants from Gracilaria asiatica Chang et Xia protoplasts (Gracilariaceae, Rhodophyta). Hydrobiologia 260/261:429–436CrossRefGoogle Scholar
  34. Yeong HY, Khalid N, Phang SM (2008) Protoplast isolation and regeneration from Gracilaria changii (Gracilariales, Rhodophyta). J Appl Phycol 20:641–651CrossRefGoogle Scholar
  35. Zemke-White WL, Ohno M (1999) World seaweed utilization: an end of-century summary. J Appl Phycol 11:369–376CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Vishal Gupta
    • 1
  • Manoj Kumar
    • 1
  • Puja Kumari
    • 1
  • C. R. K. Reddy
    • 1
  • Bhavanath Jha
    • 1
  1. 1.Discipline of Marine Biotechnology and Ecology, Central Salt and Marine Chemicals Research InstituteCouncil of Scientific and Industrial Research (CSIR)BhavnagarIndia

Personalised recommendations