Advertisement

Journal of Applied Phycology

, Volume 23, Issue 1, pp 131–135 | Cite as

Cultivation of Chlorella emersonii with flue gas derived from a cement plant

  • Clemens G. Borkenstein
  • Josef Knoblechner
  • Heike Frühwirth
  • Michael Schagerl
Article

Abstract

The present study reviews the options of cultivating the green alga, Chlorella emersonii, under photoautotrophic conditions with flue gas derived from a cement plant. It was conducted in the Lafarge Perlmooser plant in Retznei, Austria, where stone coal and various surrogate fuels such as used tyres, plastics and meat-and-bone meal are incinerated for heating limestone. During 30 days of cultivation, flue gas had no visible adverse effects compared to the controls grown with pure CO2. The semi-continuous cultivation with media recycling was performed in 5.5-L pH-stat photobioreactors. The essay using CO2 from flue gas yielded a total of 2.00 g L−1 microalgal dry mass and a CO2 fixation of 3.25 g L−1. In the control, a total of 2.06 g L−1 dry mass was produced and 3.38 g L−1 CO2 was fixed. Mean growth rates were between 0.10 day−1 (control) and 0.13 day−1 (flue gas). No accumulation of flue gas residues was detected in the culture medium. At the end of the experiment, however, the concentration of lead was three times higher in algal biomass compared to the control, indicating that cultures aerated with this type of flue gas should not be used as food supplements or animal feed.

Keywords

Chlorella Alga CO2 fixation Medium recycling Cement plant Flue gas Biotechnology 

Notes

Acknowledgements

This research was supported by the Austrian climate and energy funds (NEUE ENERGIEN 2020) through the Austrian Research Promotion Agency. We are grateful to Veronika Milocco from BDI BioDiesel International AG for technical assistance in the lab. Sincere thanks go to Thomas Holliber from Lafarge Perlmooser GmbH for aid and support in the cement plant.

References

  1. Amin S (2009) Review on biofuel oil and gas production processes from microalgae. Energy Convers Manage 50:1834–1840CrossRefGoogle Scholar
  2. Amt der Steiermärkischen Landesregierung (2005). Kurzbeschreibung über das UVP Vorhaben der Lafarge Perlmooser AG “Einsatz von bis zu 80000 t Ersatzbrennstoffe pro Jahr im Zementwerk Retznei”. Resource document. http://www.verwaltung.steiermark.at/cms/dokumente/10800525_9894/86afd7c4/Internet%20Kurzbeschreibung%20UVP%20Lafarge%20Retznei.pdf, accessed 13 January 2010 (in German)
  3. Araújo OQF, Gobbi CN, Chaloub RM, Coelho MAZ (2009) Assessment of the impact of salinity and irradiance on the combined carbon dioxide sequestration and carotenoids production by Dunaliella salina: a mathematical model. Biotechnol Bioeng 102:425–435CrossRefPubMedGoogle Scholar
  4. Benemann JR (1997) CO2 mitigation with microalgae systems. Energy Convers Manage 38:475–479CrossRefGoogle Scholar
  5. Brown LM (1996) Uptake of carbon dioxide from flue gas by microalgae. Energy Convers Manage 37:1363–1367CrossRefGoogle Scholar
  6. Chae SR, Hwang EJ, Shin HS (2006) Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photo-bioreactor. Bioresour Technol 97:322–329CrossRefPubMedGoogle Scholar
  7. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306CrossRefPubMedGoogle Scholar
  8. Chiu SY, Kaso CY, Chen CH, Kuan TC, Ong SC, Lin CS (2008) Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresour Technol 99:3389–3396CrossRefPubMedGoogle Scholar
  9. De Morais MG, Costa JA (2007a) Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnol Lett 29:1349–1352CrossRefPubMedGoogle Scholar
  10. De Morais MG, Costa JA (2007b) Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J Biotechnol 129:439–445CrossRefPubMedGoogle Scholar
  11. Doucha J, František S, Lívansky K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412CrossRefGoogle Scholar
  12. Douskova I, Doucha J, Lívansky K, Machat J, Novak P, Umysova D, Zachleder V, Vitova M (2009) Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs. Appl Microbiol Biotechnol 82:179–185CrossRefPubMedGoogle Scholar
  13. Gale J, Bradshaw J, Chen Z, Garg A, Gomez D, Rogner HH, Simbeck D, Williams R (2005) Chapter 2, Sources of CO2. In: Metz B, Davidson O, De Coninck H, Loos M, Meyer L (eds) Carbon dioxide capture and storage. Resource document. IPCC–International Panel for Climate Change. http://www.ipcc.ch/pdf/special-reports/srccs/srccs_chapter2.pdf, accessed 12 January 2010
  14. Graham LE, Graham JM, Wilcox LW (2009) Algae, 2nd edn. Benjamin Cummings, San FranciscoGoogle Scholar
  15. Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface 7:703–726. doi: 10.1098/rsif.2009.0322 CrossRefPubMedGoogle Scholar
  16. Hanagata N, Takeuchi T, Fukukju Y, Barnes DJ, Karube I (1992) Tolerance of microalgae to high CO2 and high temperature. Phytochemistry 31:3345–3348CrossRefGoogle Scholar
  17. Hsueh HT, Lia WJ, Chen HH, Chu H (2009) Carbon bio-fixation by photosynthesis of Thermosynechococcus sp. CL-1 and Nannochloropsis oculta. J Photochem Photobiol B Biol 95:33–39CrossRefGoogle Scholar
  18. Hughes E, Benemann JR (1997) Biological fossil CO2 mitigation. Energy Convers Manage 38:467–473CrossRefGoogle Scholar
  19. Jander, F. (2001). Massenkultur von Mikroalgen mit pharmazeutisch nutzbaren Inhaltsstoffen unter Verwendung von CO2 und NaHCO3, gewonnen aus den Abgasen eines Blockheizkraftwerkes. Dissertation, Christian-Albrechts-Universität zu Kiel, Germany (in German)Google Scholar
  20. Kurano N, Ikemoto H, Miyashita H, Hasegawa T, Hata H, Miyachi S (1995) Fixation and utilization of carbon dioxide by microalgal photosynthesis. Energy Convers Manage 36:689–692CrossRefGoogle Scholar
  21. Kusel-Fetzmann E, Schagerl M (1992) Verzeichnung der Sammlung von Algen-Kulturen an der Abteilung für Hydrobotanik am Institut für Pflanzenphysiologie der Universität Wien. Phyton 32:209–234Google Scholar
  22. Lafarge in 2008—Key Facts and Figures (July 2009) Resource document. http://www.lafarge.com/04072009-publication_group-facts_and_figure_2008-uk.pdf, accessed 12 January 2010
  23. Lafarge–Werksfolder Retznei (2010) Resource document. http://www.lafarge.at/fileadmin/lafarge/pdf/broschueren/Werksfolder_Rei_de_6s.pdf, accessed 12 January 2010 (in German)
  24. Lee JS, Lee JP (2003) Review of advances in biological CO2 mitigation technology. Biotechnol Bioprocess Eng 8:354–359CrossRefGoogle Scholar
  25. Lee JY, Kwon TS, Baek K, Yang JW (2005) Biological fixation of CO2 by Chlorella sp. HA-l in a semi-continuous and series reactor system. J Microbiol Biotechnol 15:461–465Google Scholar
  26. Maeda K, Owada M, Kimura N, Omata K, Karube I (1995) CO2 fixation from the flue gas on coal-fired thermal power plant by microalgae. Energy Convers Manage 36:717–720CrossRefGoogle Scholar
  27. Metz B, Davidson OR, Bosch PB, Dave R, Meyer LA (eds) Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007 Chapter 7.4.5.1 “Cement”. Resource document. http://www.ipcc.ch/publications_and_data/ar4/wg3/en/ch7-ens7-4-5.html, accessed 12 January 2010
  28. Murakami M, Ikenouchi M (1997) The biological CO2 fixation and utilization project by RITE (2)—screening and breeding of microalgae with high capability in fixing CO2. Energy Convers Manage 38:493–497CrossRefGoogle Scholar
  29. Ono E, Cuello JL (2004) Design parameters of solar concentrating systems for CO2-mitigating algal photobioreactors. Energy, the International Journal 29:1651–1657Google Scholar
  30. Ohtaguchi K, Kajiwara S, Mustaqim D, Takahashi N (1997) Cyanobacterial bioconversion of carbon dioxide for fuel productions. Energy Convers Manage 38:523–528CrossRefGoogle Scholar
  31. Otsuki T (2001) A study for the biological CO2 fixation and utilization system. Sci Total Environ 277:21–25CrossRefPubMedGoogle Scholar
  32. Pulles T, Kuenen J, Pesik J, Cadman J, Wagner A. EPER (European Pollutant Emission Register) Review Report—2004. May 2007. www.irz.cz/dokumenty/eper/eper_review_2004_version_16-5-2007.pdf, accessed 12 January 2010
  33. Raja R, Hemaiswarya S, Ashok Kumar N, Sridhar S, Rengasamy R (2008) A perspective on the biotechnological potential of microalgae. Crit Rev Microbiol 34:77–88CrossRefPubMedGoogle Scholar
  34. Stewart C, Hessami MA (2005) A study of methods of carbon dioxide capture and sequestration—the sustainability of a photosynthetic bioreactor approach. Energy Convers Manage 46:403–420CrossRefGoogle Scholar
  35. Usui N, Ikenouchi M (1997) The biological CO2 fixation and utilization project by RITE (1)—highly-effective photobioreactor system. Energy Convers Manage 38:487–492CrossRefGoogle Scholar
  36. Yoshihara KI, Nagase H, Eguchi K, Hirata K, Miyamoto K (1996) Biological elimination of nitric oxide and carbon dioxide from flue gas by marine microalga NOA-113 cultivated in a long tubular photobioreactor. J Ferment Bioeng 82:351–354CrossRefGoogle Scholar
  37. Zeiler KG, Heacox DA, Toon ST, Kadam KI, Brown LM (1995) The use of microalgae for assimilation and utilization of carbon dioxide from fossil fuel-fired power plant flue gas. Energy Convers Manage 36:707–712CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Clemens G. Borkenstein
    • 1
  • Josef Knoblechner
    • 1
  • Heike Frühwirth
    • 1
  • Michael Schagerl
    • 2
  1. 1.BDI–BioDiesel InternationalResearch and Development BioTech AGGrambachAustria
  2. 2.Department LimnologyUniversity of ViennaViennaAustria

Personalised recommendations