Advertisement

Journal of Applied Phycology

, Volume 23, Issue 1, pp 47–52 | Cite as

Effect of salinity on the biochemical composition of the alga Botryococcus braunii Kütz IPPAS H-252

  • Natalia O. Zhila
  • Galina S. Kalacheva
  • Tatiana G. Volova
Article

Abstract

The effect of 0.3 and 0.7 M NaCl on biomass yield, total nitrogen content, intracellular lipid content, and fatty acid profile of the lipids of the alga Botryococcus braunii IPPAS H-252 in different phases of the culture cycle was studied. The presence of sodium chloride in the medium inhibited the growth of algal cells for the first 3 days of the experiment, causing a decrease in total nitrogen, enhanced synthesis of triacylglycerols, and considerable changes in the lipid fatty acid profile: decreases in polyenoic acid contents (from 68.34% to 29.38% and 12.8%) and proportions of long-chain saturated acids (from 0.53% to 5.3% and 14.13% of the total fatty acids) at 0.3 M NaCl and 0.7 M NaCl, respectively. In later phases of the culture, at 0.3 M NaCl, the content of polyenoic acids rose to the values characteristic of the active growth phase of this alga. At 0.7 M NaCl, the proportion of polyenoic acids grew less significantly, but biomass concentration and total nitrogen increased, similarly to the experiment with 0.3 M NaCl.

Keywords

Botryococcus Salinity Fatty acid composition Lipid content 

Notes

Acknowledgements

The work was supported by Project No. 96 of SB RAS.

References

  1. Al-Hasan RH, Ghannoum MA, Sallal A-K, Abu-Elteen KH, Radwan SS (1987) Correlative changes of growth, pigmentation and lipid composition of Dunaliella salina in response to halostress. J Gen Microbiol 133:2607–2616Google Scholar
  2. Ben-Amotz A, Tornabene TG, Thomas WH (1985) Chemical profile of selected species of microalgae with emphasis on lipids. J Phycol 21:72–81CrossRefGoogle Scholar
  3. Christie WW (1989) Gas chromatography and lipids. A practical guide. The Oily Press, Ayr, p 230Google Scholar
  4. Elenkov I, Stefanov K, Dimitrova-Konaklieva S, Popov S (1996) Effect of salinity on lipid composition of Cladophora vagabunda. Phytochemistry 42:39–44CrossRefGoogle Scholar
  5. Fernandes TA, Iyer V, Apte SK (1993) Differential responses of nitrogen-fixing cyanobacteria to salinity and osmotic stresses. Appl Environ Microbiol 59:899–904PubMedGoogle Scholar
  6. Gouveia L, Marquez AE, da Silva TL, Reis A (2009) Neochloris oleabundans UTEX1185: a suitable renewable lipid source for biofuel production. J Ind Microbiol Biotech 36:821–826CrossRefGoogle Scholar
  7. Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186CrossRefPubMedGoogle Scholar
  8. Hagemann M, Wolfel L, Kruger B (1990) Alterations of protein synthesis in the cyanobacterium Synechocystis sp. PCC 6803 after a salt shock. J Gen Microbiol 136:1393–1399Google Scholar
  9. Harwood JL, Jones AL (1989) Lipid metabolism in algae. Adv Bot Res 10:1–53CrossRefGoogle Scholar
  10. Hu H, Gao K (2006) Response of growth and fatty acid compositions of Nannochloropsis sp. to environmental factors under elevated CO2 concentration. Biotechnol Lett 28:987–992CrossRefPubMedGoogle Scholar
  11. Huflejt ME, Tremolieres A, Pineau B, Lang JK, Hatheway J, Packer L (1990) Changes in membrane lipid composition during saline growth of the fresh water cyanobacterium Synechococcus 6311. Plant Physiol 94:1512–1521CrossRefPubMedGoogle Scholar
  12. Kalacheva GS, Zhila NO, Volova TG (2001) Lipids of the green alga Botryococcus cultured in a batch mode. Microbiology (Mikrobiologiya) 70:256–262Google Scholar
  13. Kalacheva GS, Zhila NO, Volova TG (2002a) Lipid and hydrocarbon compositions of a collection strain and a wild sample of the green microalga Botryococcus. Aquat Ecol 36:317–330CrossRefGoogle Scholar
  14. Kalacheva GS, Zhila NO, Volova TG, Gladyshev MI (2002b) The effect of temperature on the lipid composition of the green alga Botryococcus. Microbiology (Mikrobiologiya) 71:286–293Google Scholar
  15. Kates M (1975) Techniques of lipidology. Isolation, analysis and identification of lipids. Mir, Moscow, p 305Google Scholar
  16. Khoumutov G, Fry IV, Huflejt ME, Packer L (1990) Membrane lipid composition, fluidity, and surface charge changes in response to growth of the fresh water cyanobacterium Synechococcus 6311 under high salinity. Arch Biochem Biophys 277:263–267CrossRefGoogle Scholar
  17. Lee Y-K, Tan H-M, Low C-S (1989) Effect of salinity of medium on cellular fatty acid composition of marine alga Porphyridium cruentum (Rhodophyceae). J Appl Phycol 1:19–23CrossRefGoogle Scholar
  18. Li Y, Qin JG (2005) Comparison of growth and lipid content in three Botryococcus braunii strains. J Appl Phycol 17:551–556CrossRefGoogle Scholar
  19. Metzger P, Largeau C (1999) Chemicals of Botryococcus braunii. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis, London, pp 205–260Google Scholar
  20. Rao RA, Dayananda C, Sarada R, Shamala TR, Ravishankar GA (2007) Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresour Technol 98:560–564CrossRefPubMedGoogle Scholar
  21. Renaud SM, Parry DL (1994) Microalgae for use in tropical aquaculture II: effect of salinity on growth, gross chemical composition and fatty acid composition of three species of marine microalgae. J Appl Phycol 6:347–356CrossRefGoogle Scholar
  22. Vazquez-Duhalt R, Arredondo-Vega BO (1991) Haloadaptation of the green alga Botryococcus braunii (race A). Phytochemistry 30:2919–2925CrossRefGoogle Scholar
  23. Xu X-Q, Beardall J (1997) Effect of salinity on fatty acid composition of a green microalga from an Antarctic hypersaline lake. Phytochemistry 45:655–658CrossRefGoogle Scholar
  24. Zhila NO, Kalacheva GS, Volova TG (2005) Influence of nitrogen deficiency on biochemical composition of the green alga Botryococcus. J Appl Phycol 17:309–315CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Natalia O. Zhila
    • 1
    • 2
  • Galina S. Kalacheva
    • 1
    • 2
  • Tatiana G. Volova
    • 1
    • 2
  1. 1.Institute of Biophysics SB RASKrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations